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Supply chain operations frequently face disruptions due to freight rejection. Motivated by real-world prac-

tices, this paper develops a game-theoretical model to examine how digital freight platforms can share their

private predictive information on the spot freight market to help supply chain companies improve their oper-

ations and mitigate freight rejection risks. Specifically, the model considers a digital freight platform that

shares private information with a supply chain comprising a retailer (the shipper working directly with the

platform) and a manufacturer, enabling them to adjust their decisions in anticipation of freight rejection. We

address two key strategic questions faced by the platform: (i) how to share the private information, and (ii)

how to choose the accuracy of the private information. Our findings reveal that, as upstream production dis-

economies increase, the platform favors sharing information with both the retailer and manufacturer, rather

than exclusively with the retailer. Moreover, as the supply chain becomes more sensitive to freight rejection,

the platform benefits from improving the accuracy of the private information, with both the retailer’s and the

platform’s net payoffs initially decreasing and then increasing. We further examine platform’s information-

sharing strategies in the context of competing supply chains and characterize its equilibrium information

sharing formats. Interestingly, we find that as the competition intensity increases, the platform will decrease

the accuracy of the private information within an equilibrium format; however, as the competition intensity

further increases, the equilibrium formats will shift, leading the platform to have sudden stepwise improve-

ments in the accuracy of its information. Finally, we observe that information sharing by digital freight

platforms may have a negative spillover effect on other solutions aimed at reducing freight rejection.
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1. Introduction
1.1. Motivation

Modern supply chain logistics is increasingly affected by uncertain freight market conditions (Lee

et al. 2015). A common phenomenon that exacerbates the impact of such uncertainty is freight

(load) rejection, which is particularly prevalent in the context of truckload shipping (Scott et al.

2017). Typically, shippers in supply chains try to secure freight rates for transporting their goods

(or materials) in advance by signing long-term freight contracts with carriers. When shippers

need to transport their goods, they first tender load requests to their contracted carriers, who are

expected to accept and haul the goods at the contracted rates. However, due to the lack of legally

binding obligations in freight contracts, contracted carriers can opt to reject these requests. There

is empirical evidence (e.g. Scott et al. (2017), Aryapadi et al. (2021), Acocella (2022)) indicating

that a major reason for freight rejection is the carriers’ opportunistic behavior in reserving their

capacity for high spot (freight) rates, especially when the freight market is tight (i.e., freight demand

exceeds supply). When freight rejection occurs, shippers are forced to find for-hire carriers from

the spot (freight) market, often paying a significant spot premium of 35% above the contracted

rate (Aemireddy and Yuan 2019, Scott et al. 2017).

Fortunately, the rise of digital freight platforms, such as Convoy (www.convoy.com) and Uber

Freight (www.uberfreight.com), provides companies in supply chains with the opportunity to

improve their operations in response to freight rejection. When freight rejection occurs, these plat-

forms leverage advanced information technologies and matching algorithms to help companies in

supply chains quickly locate alternative for-hire carriers (Miller et al. 2020, Zhou and Wan 2022).

Moreover, digital freight platforms serve as data analytics centers and have superior private infor-

mation on the spot freight market compared to those companies in supply chains. As a result,

platforms like Convoy and Uber Freight have established information sharing programs to help

companies in supply chains better anticipate freight rejection and make responsive adjustments in

their operations. Specifically, the platforms can share information through two different strategies.

First, some platforms, such as Uber Freight, provide Application Programming Interfaces (APIs)

that allow companies in supply chains to access their private information. Second, other platforms,

such as Convoy, offer APIs that enable companies to integrate private information with their own

Transportation Management Systems (TMS) and Enterprise Resource Planning (ERP) systems

(Freightos 2024, Pyzyk 2021). The second strategy for information sharing is evidently more flex-

ible, as integration with companies’ existing systems allows them (e.g., downstream retailers) to

further share freight market data with their partners (e.g., upstream manufacturers) in the supply

chain using Electronic Data Interchange (EDI).
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The motivation for this work partially stems from a research collaboration with a leading digital

freight platform in China1. Most partners directly working with the platform are downstream

companies (e.g., retailers) in supply chains that use the platform’s services in cases of freight

rejection. Recently, this platform initiated a program to share predictive information about the

spot freight market with its partners. However, the platform faces challenges in implementing the

information sharing program. First, similar to Uber Freight and Convoy, the platform must choose

between different strategies for information sharing. One strategy is referred to as partial company-

level information sharing, under which only downstream retailers (i.e., the direct shippers) can

access the platform’s predictive information via APIs. Noting that this predictive information could

also benefit upstream firms (e.g., manufacturers/suppliers) in the supply chain—who could use

the information to adjust their wholesale prices by anticipating the impact of freight rejection

on downstream retailing (Chen et al. 2016, 2019, Konur and Toptal 2012)—the platform can

adopt another strategy called full supply-chain-level information sharing. This strategy allows

downstream retailers to flexibly share predictive information with upstream manufacturers, for

example, through API integration with the retailers’ TMS or EPR systems. For brevity, we will

refer to “partial company-level information sharing” as “partial information sharing” and to “full

supply-chain-level information sharing” as “full information sharing” in the remainder of this paper.

Second, the platform needs to carefully plan the accuracy of the predictive information when

investing in the program. As the accuracy of the predictive information increases, information

sharing helps supply chains gain a competitive edge by allowing them to adjust their operations in

better anticipation of freight rejection, but it also requires the platform to spend more on collecting

sample data from the spot freight market. In summary, several key issues relevant to the platform’s

practice of information sharing are as follows.

(a) How can we quantify the value of information sharing by a digital freight platform on com-

panies in a supply chain, as well as for the platform itself, in the context of freight rejection?

(b) How does a digital freight platform choose the appropriate information sharing strategy (i.e.,

partial or full information sharing) when implementing its information sharing program?

(c) How does a digital freight platform optimize the accuracy of its predictive information? Should

the platform invest more to improve the accuracy of its predictive information as supply chain

competition intensifies?

Although these issues are motivated by the Chinese digital freight platform, they are relevant to

digital freight platforms worldwide, including Convoy, Loadsmart, and Uber Freight. However, to

the best of our knowledge, these practical problems are less addressed in the literature. To fill this

1 For confidentiality reasons, the details about the platform are omitted.
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research gap, we develop a game-theoretical model consisting of a supply chain and a digital freight

platform. In the supply chain, a retailer sells goods to a Cournot-type market of customers and

orders these goods from a manufacturer with production diseconomy. The production diseconomy,

which refers to the phenomenon that the manufacturer’s marginal production cost increases with

production quantity, which is commonly used in the literature (Ha et al. 2011, Shang et al. 2016).

It is well supported by empirical evidence in industries such as petroleum refining and auto making

(Griffin 1972, Mollick 2004). The retailer also utilizes transportation services, typically provided by

a contracted carrier, to move the procured goods from the manufacturer’s facility to the retailer’s

site. However, the retailer may encounter freight rejection, depending on uncertain spot freight

rates. If freight rejection occurs, the retailer finds a for-hire carrier through the platform and pays

a spot rate to the for-hire carrier along with a brokerage fee to the platform. The platform has

a private predictive signal about the spot rate and can share the signal with the supply chain,

helping companies adjust their decisions in better anticipation of the rejection of the shipment.

Moreover, the platform must choose between two information sharing strategies—either partial or

full information sharing—and decide the prediction accuracy of the signal at costly efforts. We also

extend the analysis by considering information sharing by the platform with two supply chains

engaging in Cournot competition.

1.2. Main Findings

By exploring the single supply chain model, we first analyze the effect of information sharing by

a digital freight platform on both firms in the supply chain and the platform itself. Compared

to the baseline of no information sharing, we find that any degree of information sharing by the

platform, whether partial or full, benefits relevant players by improving their operations in response

to freight rejection, providing an explanation for the widespread use of these information sharing

programs in practice. We then compare the platform’s two information sharing strategies and find

that, relative to partial information sharing, full information sharing generates more value for the

manufacturer by enabling them to adjust the wholesale price but generates less value for the retailer

and the platform due to the double marginalization effect. As a result, under side payments from

the manufacturer to both the retailer and the platform, the platform’s equilibrium choice is full

information sharing only if the upstream production diseconomy is sufficiently large. Otherwise,

the platform’s equilibrium information sharing strategy is partial information sharing. We also

demonstrate that the platform should improve the prediction accuracy of its own private signal as

the retailer’s sensitivity coefficient of freight rejection increases.

By analyzing the extended model that incorporates supply chain competition, we develop the con-

ditions for the platform’s equilibrium information sharing strategies for competing supply chains,
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depending on the production diseconomy and competition intensity. Generally, we find that the

equilibrium information sharing strategy takes on three distinct formats: (a) symmetric partial

information sharing (i.e., both supply chains adopt partial information sharing), (b) asymmetric

mixed information sharing (i.e., one supply chain adopts full information sharing while the other

adopts partial information sharing), and (c) symmetric full information sharing (i.e., both supply

chains adopt full information sharing). As the upstream production diseconomy increases (or as

competition intensity increases), the platform gradually changes its equilibrium information shar-

ing format from (a) to (c), indicating a move toward more comprehensive information sharing

across supply chains. Furthermore, we characterize the platform’s optimal prediction accuracy deci-

sion. Notably, the optimal prediction accuracy decision exhibits a piecewise form as the platform

changes equilibrium information sharing formats. Interestingly, we identify two significant impacts

of supply chain competition on the platform’s optimal accuracy decision. First, as competition

intensity increases, the platform experiences sudden stepwise improvements in its prediction accu-

racy, reflected by two upward jumps in the optimal prediction accuracy as the platform transitions

equilibrium information sharing formats from (a) to (c). Second, under every equilibrium informa-

tion sharing format, the platform’s prediction accuracy decision decreases as competition intensity

increases.

1.3. Research Contributions

This paper contributes to the literature in the following ways. First, unlike existing studies focusing

primarily on the role of digital freight platforms in matching freight demand and supply (Miller

et al. 2020, Li et al. 2020, Zhou and Wan 2022), this work is the first to examine information

sharing by digital freight platforms with companies in supply chains facing freight rejection risks.

Our results show that information sharing by digital freight platforms improves the responsiveness

of these companies to freight rejection and allows the platforms to effectively exploit the business

value of their private information.

Second, in the literature (e.g., Scott et al. (2017), Acocella (2022)), some solutions (e.g., flexible

freight contracts) have been proposed to manage freight rejection by reducing the probability

of its occurrence. This paper complements the literature by introducing a novel approach that

focuses on improving firms’ responsiveness to freight rejection through information sharing. We

also examine the interaction between the existing solutions and our new solution, observing a

negative spillover effect of information sharing by digital freight platforms on the effectiveness of

the existing solutions.

Third, previous studies (e.g., Ha et al. (2011), Shang et al. (2016)) have shown that the double

marginalization effect plays an important role in the economic incentives for intra-supply-chain
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information sharing. This paper extends these studies by demonstrating that full information shar-

ing by digital freight platforms with supply chains also leads to the double marginalization effect on

the platform itself. As such, full information sharing needs to be induced through manufacturers’

side payments only when their production diseconomy is sufficiently large. Interestingly, our results

show that the equilibrium information sharing formats for competing supply chains can take the

form of asymmetric mixed information sharing, which contrasts with previous findings that only

symmetric information sharing formats arise (Ha et al. 2011). We also reveal the significant impact

of supply chain competition on shifts in equilibrium information formats and optimal prediction

accuracy decisions by digital freight platforms.

2. Literature Review

This paper is related to three streams of literature: (i) digital freight platforms, (ii) freight opera-

tions considering freight rejection, and (iii) supply chain information sharing.

Digital Freight Platforms. In recent years, digital freight (brokerage) platforms, also known

as online freight exchange platforms, have garnered increasing interest from operations management

researchers. Powered by advanced information technologies (such as mobile applications and the

Internet of Things), these platforms enable shippers in supply chains to quickly locate for-hire (or

private) carriers from the spot freight market, especially when they are rejected by their contract

carriers. Most of the existing literature delves into the fundamental roles of digital freight platforms

in addressing the matching or assignment problem, as well as how to improve the platform’s

performance of matching and assignment (Caplice 2007, Min and Kang 2021). For example, Miller

et al. (2020) studies truck routing problems for digital freight platforms, assuming visibility of

network-wide demand and supply information. Specifically, they model routing problems as a

Markov decision process, taking into account multiple factors such as the probability of winning a

load, future profitability, and the bidding order priority among possible load options. Li et al. (2020)

study the problem of digital freight platforms jointly optimizing matching and pricing strategies

for delivering to multiple retailers, and demonstrate the effectiveness of their proposed matching

and pricing policy using empirical data from a famous freight platform in China. In addition

to these theoretical studies, Zhou and Wan (2022) conduct an empirical study to examine the

impact of digital freight platforms on the profitability and stock performance of incumbent road

freight logistics companies, and find that only large trucking companies have significant positive

profitability changes.

In supply chain logistics practice, digital freight platforms also play an informational role in

sharing information with firms within supply chains to improve operations (Pyzyk 2021). How-

ever, this aspect is seldom addressed in the existing literature. This paper is among the few that
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investigates the impact of information sharing via digital freight platforms on supply chain oper-

ations in response to freight carrier rejection. This paper further discusses the strategic problems

that digital freight platforms face when deciding on information sharing strategies and optimizing

prediction accuracy. Our result complements the literature by providing insight into the conditions

under which digital freight platforms implement various equilibrium information sharing strategies

in both single and competing supply chains. Furthermore, we reveal the impact of the probability

of freight rejection—a key parameter in the trucking industry—on the optimal prediction accuracy

of digital freight platforms.

Freight Operations Considering Carrier Freight Rejection. There is a large body of oper-

ations management literature that discusses freight operations in supply chain logistics, examining

the interaction between freight operations and classical retail, inventory and production operations

(Lu et al. 2017, 2020, Boada-Collado et al. 2020). It is worth noting that most of these studies

are based on the assumption that shippers can secure freight rates by entering into long-term con-

tracts with contract carriers. However, since these long-term freight contracts lack legally binding

obligations, shippers often encounter freight rejection in a tight freight market, resulting in high

operational costs for the entire supply chain (Scott et al. 2017, Caplice 2021). Moreover, as freight

market conditions grow increasingly uncertain and complex, the negative impact of freight rejection

can no longer be ignored. Consequently, some researchers have begun to explore freight operations

considering freight rejection. For example, Tsai et al. (2011) propose the use of derivative con-

tracts in trucking as a means to hedge against uncertainty in transportation capacity and cost.

Scott et al. (2017) carry out an empirical study to examine key operational and economic factors

that drive and deter freight rejection. In particular, they suggest implementing a flexible freight

pricing mechanism to mitigate freight rejection. Acocella (2022) propose a market-based freight

contract, which dynamically updates the freight price between shippers and carriers to minimize

the probability of freight rejection.

This paper also belongs to the literature on freight operations considering freight carrier rejection.

Unlike the extant studies, we consider a new solution of improving supply chains’ responsiveness to

freight carrier rejection via digital freight platforms’ information sharing. Our results demonstrate

the effectiveness of this solution by quantifying the positive effect of information sharing on ship-

pers (i.e., the retailer) relative to the benchmark of no information sharing. Interestingly, the result

also shows that shippers’ payoffs could increase as the probability of freight rejection increases

under digital freight platforms’ information sharing, which contradicts to the conventional wisdom

that probability of freight rejection hurts shippers in the literature. We also examine the interac-

tion between the existing solutions of suppressing probability of freight rejection and our solution

of information sharing, and find that the existing solution can hurt shippers in the presence of

information sharing.
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Supply Chain Information Sharing. Information sharing in supply chains is a widely

explored topic in the operations management community. Over the past decades, numerous papers

have addressed a variety of issues related to information sharing, especially in the context of demand

information sharing (Li 2002, Ha et al. 2011, Zhao et al. 2014, Chen and Deng 2015, Huang et al.

2018, Ha et al. 2022, Li and Zhang 2023). Recently, the emergence of platforms that possess supe-

rior information resources compared to individual firms in supply chains has led some researchers

to investigate issues related to platform information sharing (Tsunoda and Zennyo 2021). For

example, Liu et al. (2021) considers a retail platform’s information sharing problem in which the

platform possesses superior demand information and controls the prediction accuracy level when

sharing it to competing sellers. Based on privacy and fairness constraints, they explore different

formats for the platform’s information sharing, namely asymmetric full/partial sharing and sym-

metric full/individual sharing. Ha et al. (2022) develops a multistage game-theoretic model to study

the impact of retail platforms’ information sharing on an upstream manufacturer’s encroachment

decision and, more generally, the manufacturer’s channel choice decision.

This paper contributes to the literature by discussing a new context of digital freight platform’s

information sharing with firms in supply chains. More specifically, our paper has two differentiating

features. First, most of the prior studies address either intra-supply-chain information sharing or

vertical information sharing from platform to individual firms. However, digital freight platforms’

information sharing combines both platform-to-supply-chain and intra-supply-chain information

sharing together. In some sense, our results on the operational effect of digital freight platforms’

information sharing generalize the prior result by Ha et al. (2011). Second, only a small proportion

of the existing studies consider the platform’s strategic prediction accuracy decision. The work

of Liu et al. (2021) is an exception, treating the retail platform’s prediction accuracy decision

as a binary variable of whether to add additional noise to original freight information or not.

Unlike Liu et al. (2021), we model the digital freight platform’s prediction accuracy decision as a

continuous variable. By doing so, we are able to gain deeper insights into how the probability of

freight rejection and supply chain competition influence the platform’s optimal decision regarding

prediction accuracy.

3. The Model

Consider an analytical model consisting of a digital freight platform (simply called “the platform”)

and a supply chain. In the supply chain, a retailer (“she”) purchases goods from a manufacturer

(“he”) at a wholesale price w. Following the literature (e.g. Ha et al. (2011), Shang et al. (2016),

Liu et al. (2021)), we assume that the retailer sells these goods to a Cournot-type market, with a

market clearing price of p= u− q, where u > 0 is the potential market size and q is the retail (or
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order) quantity. Given the retailer’s order quantity q, the manufacturer produces the goods at a

cost of cq+ kq2/2, where c > 0 is the variable cost rate and k > 0 is the coefficient of production

diseconomy. We note that the manufacturer’s production diseconomy (i.e., the marginal production

cost increases with volume) is commonly observed in industries such as petroleum refining and auto

making (Griffin 1972, Mollick 2004), and is often modeled by a quadratic function in the literature

on information sharing (Ha et al. 2011, Shang et al. 2016).

The retailer also requires transportation services to move the procured goods from the manufac-

turer’s site to her own. Following established practices in supply chain logistics (Caplice 2007, Scott

et al. 2017, Scott 2015, Caplice 2021), we consider that the retailer works with a contract carrier

through a long-term (yearly) contract, under which the retailer pays a fixed contract (freight) rate

r > 0 for the shipment of the purchased goods. Since we do not consider the negotiation between

the retailer and the contracted carrier, the contract rate r is an exogenous parameter in this model.

However, the retailer also faces the risk of freight rejection. If freight rejection occurs, the platform

helps the retailer find an alternative for-hire carrier to move the goods, with the retailer paying a

spot rate S to the for-hire carrier, as well as a commission fee ρ to the platform. Empirical evidence

(e.g., Caplice (2007), Scott et al. (2017), Acocella (2022), Caplice (2021)) suggests that a main

economic driver for freight rejection is the opportunistic behavior of contracted carriers reserv-

ing capacity for spot (freight) rates in a tight freight market. Additionally, the probability δ(S)

of freight rejection is an increasing function of the spot rate S. Therefore, we focus on potential

freight rejection in a tight freight market and consider the probability δ(S) to have a linear form

as follows:

δ(S) = α + ℓS, (1)

where α is a constant and ℓ > 0 captures the sensitivity of freight rejection with respect to the spot

freight rate. Specifically, the linear function (1) can be viewed as approximation to more complex

nonlinear functions (such as logistic functions) used in the empirical studies2, while also ensuring

model tractability. By anticipating possible freight rejection, the retailer’s expected freight rate

rf (S), conditioned on the spot rate S, is given by

rf (S) = r(1− δ(S)) + (S+ ρ)δ(S). (2)

All the players have public knowledge on the spot freight rate S = s+ ϵ, where s is the mean of the

spot rate and ϵ is random noise with mean zero and variance η. Furthermore, the mean s of the spot

2 In some empirical papers (such as Scott et al. (2017) and Acocella (2022)), the probability of freight rejection is
modeled by logistic function as follows: L(S) = 1

1+e−(w0+w1S) , where S is spot rate. Then, as shown in the literature

(Haldar and Mahadevan 2000), a simple linear mean-value approximation logistic function used is L(S)≈L′(s)(S−
s)+L(s), where s is the mean of S and L′(·) is the first order derivative function.
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rate is larger than the contract rate (i.e., s > r) in a tight freight market; for example, Aemireddy

and Yuan (2019) has shown that the average spot rate is 35% higher than the contracted rate.

The platform has private information Ψ about ϵ. Following the literature on information sharing

(Ha et al. 2011, Kurtuluş et al. 2012, Shang et al. 2016, Ha et al. 2017), we assume that the

private signal Ψ is an unbiased estimator of ϵ, using a linear-expectation information structure. This

information structure includes well-known distributions, such as normal-normal, beta-binomial,

and gamma-Poisson. The prediction accuracy of the signal is defined as a := 1/E [Var[Ψ|θ]]. The

accuracy is known to be proportional to the sample size when Ψ is a sample mean from independent

sampling (Ha et al. 2011), and the platform can improve the signal’s accuracy by collecting more

samples at an acquisition cost wa, where w is the unit cost of collecting data. Let E [ϵ|Ψ] denote

the posterior mean conditioned on the signal Ψ, which is given by

E [ϵ|Ψ] =
a

1/η+ a
Ψ. (3)

Motivated by the practices of digital freight platforms, we consider that the platform has two

strategies of information sharing with the supply chain. First, the platform shares its private signal

Ψ only with the retailer, i.e., “partial (firm-level) information sharing” (denoted by P). Second, the

platform not only shares the signal with the retailer, but also allows the retailer to further share

it with the manufacturer, i.e., “full (supply-chain-level) information sharing” (denoted by F). All

the players engage in a multistage game as follows:

1. Initially, the platform selects its information sharing strategy and sets the subscription fee for

disclosing the information. Moreover, the manufacturer can induce full information sharing by

offering side payments to the retailer and the platform, denoted by TR and TP , respectively.

2. After the signal Ψ unveils, the platform determines the brokerage fee ρ for the retailer, and

the manufacturer sets the wholesale price w based on the available information.

3. The retailer decides on the order quantity q.

In our model, information sharing agreements by the platform are long-term decisions (such

as whether to develop and offer API integration) that are costly to change in the practice of

digital freight platforms. The side payment mechanism is widely observed in practice and literature,

such as the subscription fees paid by the manufacturer for access to the retailer’s (and thus the

platform’s) private data (Shang et al. 2016, Liu et al. 2021). The brokerage fee and wholesale price

are short-term decisions because the platform and the manufacturer can update these decisions

over time. Specifically, the platform announces the brokerage fee before the retailer decides the

order quantity. This is common practice of digital freight platforms; for example, the full truck

alliance platform settles a commission rate ranging from 21 to 52 RMB before shippers decide
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their volumes (Alliance 2023). This assumption is also used in the literature, enabling retailers to

better plan their order quantities considering shipment logistics costs (Chen et al. 2016, 2019).

Note that a digital platform does not necessarily observe the manufacturer’s wholesale price when

deciding the brokerage fee, and the brokerage fee set by the platform is private information to

the manufacturer when deciding the wholesale price. As such, we treat the pricing decisions of the

platform and the manufacturer as a Nash game.

For ease of exposition, we define the parameter π := u− c− r − ηℓ− (s− r)(α+ sℓ), which is

decreasing in ℓ. Following the literature (e.g., Li and Zhang (2008), Ha et al. (2011, 2017)), we

assume that π > 0 and that the variance η is small relative to π, ensuring that the equilibrium

result will be an interior-point solution for most realizations of demand uncertainty and signals

(i.e., with a probability close to one). Finally, we let R+ denote the non-negative orthant.

4. Single Supply Chain
4.1. Baseline: No Information Sharing

In the baseline setting, the platform does not share any information on the spot rate with the

companies in the supply chain, and we solve each player’s equilibrium decisions using backward

induction as follows. First, given the wholesale price w and the brokerage rate ρ, the retailer’s

problem is to maximize the expected profit by choosing the order quantity as follows:

max
q∈R+

{
E [(u− q−w− rf (S))q]

}
.

Define q̃(w,ρ) := argmaxq∈R+
{E [(u− q−w− rf (S))q]} as the retailer’s optimal order quantity.

Next, we consider the Nash game between the manufacturer’s and the platform’s pricing decisions.

Given the conjecture ρ about the brokerage fee, the manufacturer aims to maximize profit by

solving the following problem:

max
w∈R+

{
q̃(w,ρ)(w− c)− k

2
q̃(w,ρ)2

}
.

Meanwhile, given the conjecture w about the wholesale price, the platform maximizes its revenue

from serving the retailer in the case of freight rejection as follows:

max
ρ∈R+

{
E [ρ q̃(w,ρ) δ(S)|Ψ]

}
.

Let w̃(ρ) := argmaxw∈R+
{q̃(w,ρ)(w− c)− k

2
q̃(w,ρ)2} and ρ̃(w) := argmaxρ∈R+

{E [ρ q̃(w,ρ) δ(S)|Ψ]}

be the manufacturer’s and the platform’s best response functions, respectively. Notably, the plat-

form’s best response ρ̃(·) is independent of the signal Ψ because the retailer’s optimal order quantity

is independent of it. By jointly considering the manufacturer’s and platform’s best response func-

tions, we derive their equilibrium prices wN and ρN.
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By substituting (wN, ρN) into the retailer’s optimal order quantity, we obtain the supply chain’s

equilibrium retail quantity, denoted by qN := q̃(wN, ρN). From (wN, ρN), we can also derive the

(ex-ante) payoffs for the retailer, the manufacturer, and the platform, denoted by ΠN
R , Π

N
M , and

ΠN
P , respectively. This is summarized by the following result:

Lemma 1. In a single supply chain, under no information sharing, the supply chain’s equilibrium

retail quantity is given as follows:

qN =
π

k+6
. (4)

Moreover, the ex-ante payoffs for the retailer, manufacturer, and the platform are given as follows:

ΠN
R =

π2

(k+6)2
, ΠN

M =
π2(k+4)

2(k+6)2
, ΠN

P =
2π2

(k+6)2
(5)

Proof. See Appendix A.1. □

From Lemma 1 we observe that the supply chain’s equilibrium retail quantity and each player’s

payoff depend only on the prior information about the spot freight rate in the baseline setting. In

other words, although the platform has the private signal Ψ, this signal has no effect on any of the

players, including the platform, unless it is shared with the companies in the supply chain. This

result highlights the necessity for the platform to share its private signal in order to make better

use of it.

4.2. Analysis of Information Sharing

We first consider the case of partial information sharing, where the platform shares its private

signal Ψ only with the retailer. Conditioned on Ψ, the retailer’s problem of maximizing its expected

profit is as follows:

max
q∈R+

{
E [(u− q−w− rf (S)) q|Ψ]

}
.

Define q̆(w,ρ,Ψ) := argmaxq∈R+
{E [(u− q−w− rf (S)) q|Ψ]} as the platform’s optimal order quan-

tity conditional on the signal Ψ. Next, given the conjecture w on the wholesale price, the platform

aims to maximize its revenue, conditioned on the signal Ψ, by considering the following problem:

max
ρ∈R+

{
E [ρ q̆(w,ρ,Ψ) δ(S)|Ψ]

}
.

Meanwhile, given the conjecture ρ on the brokerage fee, the manufacturer aims to maximize his

expected profit based only on prior information by solving the following problem:

max
w∈R+

{
E
[
q̆(w,ρ,Ψ)(w− c)− k

2
q̆(w,ρ,Ψ)2

]}
.

As before, we can derive the platform’s and the manufacturer’s best response

functions, denoted by ρ̆(w,Ψ) := argmaxρ∈R+{E [ρ q̆(w,ρ,Ψ) δ(S)|Ψ]} and w̆(ρ) :=
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argmaxw∈R+
{E

[
q̆(w,ρ,Ψ)(w− c)− k

2
q̆(w,ρ,Ψ)2

]
}, respectively. It should be noted that the

platform’s response ρ̆(w,Ψ) depends on Ψ, while the manufacturer’s response is independent of

it. Therefore, we focus on finding the Bayesian Nash equilibrium that simultaneously fulfills their

best response functions in the case of partial information sharing.

In the case of full information sharing, the retailer’s optimal order quantity and the platform’s

best response continue to follow q̆(·) and ρ̆(w,Ψ), respectively. However, the manufacturer now

observes Ψ and maximizes his conditional expected profit as follows:

max
w∈R+

{
E
[
q̆(w,ρ,Ψ)(w− c)− k

2
q̆(w,ρ,Ψ)2|

]}
. (6)

Define w̆′(ρ,Ψ) := argmaxw∈R+
{E

[
q̆(w,ρ,Ψ)(w− c)− k

2
q̆(w,ρ,Ψ)2

]
|Ψ} as the manufacturer’s best

response in the case of full information sharing. We then can find the Nash equilibrium that jointly

satisfies ρ̆(w,Ψ) and w̆′(ρ,Ψ).

By substituting these equilibrium wholesales prices and brokerage fees into the retailer’s optimal

retail quantity q̆(·), we obtain the supply chain’s equilibrium retail quantity, denoted by qY, under

the platform’s information sharing arrangement Y ∈ {P,F}. We also let ΠY
R , Π

Y
M , and ΠP

P denote

the payoffs for the retailer, the manufacturer, and the platform, respectively. By further defining

v1 :=E
[
E [ϵ|Ψ]

2
]
= η2

η+1/a
and v2 :=E

[
E [ϵ2|Ψ]

2
]
− η2 = 2η4

(η+1/a)2
, we have the following result:

Proposition 1. In a single supply chain, under either partial or full information sharing, the

supply chain’s equilibrium retail quantities are given as follows:

qP = qN +
ℓ(η−E [ϵ|Ψ] (2s− r)−E [ϵ2|Ψ])−αE [ϵ|Ψ]

4
,

qF = qN +
ℓ(η−E [ϵ|Ψ] (2s− r)−E [ϵ2|Ψ])−αE [ϵ|Ψ]

k+6
.

(7)

Moreover, all players’ payoffs are given as follows:

ΠP
R = ΠN

R +
(α+(2s− r)ℓ)2v1 + ℓ2v2

16
, ΠF

R = ΠN
R +

(α+(2s− r)ℓ)2v1 + ℓ2v2
(k+6)2

,

ΠP
M = ΠN

M − k
(α+(2s− r)ℓ)2v1 + ℓ2v2

32
, ΠF

M = ΠN
M +

(k+4)((α+(2s− r)ℓ)2v1 + ℓ2v2)

2(k+6)2
,

ΠP
P = ΠN

P +
(α+(2s− r)ℓ)2v1 + ℓ2v2

8
, ΠF

P = ΠN
P +

2((α+(2s− r)ℓ)2v1 + ℓ2v2)

(k+6)2
.

(8)

Proof. See Appendix A.2. □

From (7) in Proposition 1, we observe that the supply chain’s equilibrium retail quantity under

either partial or full information sharing is expressed as the sum of the retail quantity qN in the

baseline setting and further adjustments made by the supply chain based on the private signal Ψ

(i.e., the terms
ℓ(η−E[ϵ|Ψ](2s−r)−E[ϵ2|Ψ])−αE[ϵ|Ψ]

4
and

ℓ(η−E[ϵ|Ψ](2s−r)−E[ϵ2|Ψ])−αE[ϵ|Ψ]

k+6
in qP and qF, respec-

tively). Similarly, all players’ payoffs are given by the combination of their payoffs ΠN
R , Π

N
M , and
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ΠP
P in the baseline setting and the payoff surplus (or shortfall) caused by the adjustments made

due to the private signal Ψ. In particular, partial information sharing results in a surplus shortfall

for the manufacturer, captured by the term −k (α+(2s−r)ℓ)2v1+ℓ2v2
32

. This shortfall occurs because the

manufacturer cannot effectively respond to the retailer’s adjustment in her retail quantity without

observing the private signal Ψ, leading to increased production costs due to production diseconomy.

Moreover, based on the payoffs shown in Proposition 1, we can quantify the effect of the plat-

form’s information sharing strategies Y ∈ {P,F} on every player relative to the benchmark of no

information sharing by examining the quantities ΠY
R −ΠN

R , Π
Y
M −ΠN

M , and ΠY
P −ΠN

P . We can also

compare the effects of partial/full information sharing on every player by examining ΠF
R − ΠP

R,

ΠF
M −ΠP

M , and ΠF
P −ΠP

P .

Proposition 2. In a single supply chain, information sharing by the platform results in the

following:

(a) Partial information sharing benefits the retailer and the platform (i.e., ΠP
R >ΠN

R and ΠP
P >

ΠN
P ), but hurts the manufacturer (i.e., ΠP

M <ΠN
M).

(b) Full information sharing benefits the retailer, the manufacturer, and the platform (i.e., ΠF
R >

ΠN
R , Π

F
M >ΠN

M and ΠF
P >ΠN

P ).

(c) Compared to partial information sharing, full information sharing generates more value for

the manufacturer (i.e., ΠF
M − ΠN

M > ΠP
M − ΠN

M) but generates less value for the retailer and the

platform (i.e., ΠF
R −ΠN

R <ΠP
R −ΠN

R and ΠF
P −ΠN

P <ΠP
P −ΠN

P ).

Proof. See Appendix A.3. □

Parts (a) and (b) of Proposition 2 can be interpreted as follows. On the one hand, both partial

and full information sharing benefit the retailer and the platform (that is, ΠY
R > ΠN

R and ΠY
P <

ΠN
P for Y ∈ {P,F}) because information sharing allows the retailer to better adjust her order

quantity and allows the platform to leverage the business value of its private information. On

the other hand, only full information sharing benefits the manufacturer because it enables him

to adjust the wholesale price based on Ψ. Part (c) of Proposition 2 further compares the values

of partial and full information sharing to the retailer, the manufacturer, and the platform, and

shows that full information sharing generates less value for the retailer and the platform. This

outcome is due to the well-known double marginalization effect (DME) in supply chains. That is,

the manufacturer’s adjustment of the wholesale price works against the retailer’s and the platform’s

respective adjustments to the order quantity and brokerage fee.

It is worth mentioning that the DME of information sharing on downstream retailers has been

addressed by the literature (Ha et al. 2011, Shang et al. 2016). However, Proposition 2 shows that
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information sharing by a digital freight platform also leads to a DME on the platform itself; this

finding is novel and extends the existing literature. The primary implications of Proposition 2 are

two-fold. First, the baseline strategy of no information sharing is dominated by the platform’s

information sharing strategies (either partial or full), which explains the economic incentives for

information sharing by digital freight platforms in practice. Second, the manufacturer needs to

induce full information sharing by offering side payments TR (no less than |ΠF
R − ΠP

R|) and TP

(no less than |ΠF
P −ΠP

P |) to the retailer and the platform, respectively, to compensate for their

losses from sharing private data. With these side payments, the manufacturer’s net value under

full information sharing is given by

ΠF
M − ΠP

M − TR − TP . (9)

Thus, full information sharing is possible only when the manufacturer’s net value is nonnegative.

Based on this observation, we obtain the following result.

Proposition 3. In a single supply chain, we have the following:

(a) When the manufacturer’s production diseconomy is sufficiently large, i.e., k > 2(2
√
2− 1),

full information sharing is induced by side payments from the manufacturer to the retailer and the

platform; otherwise, partial information sharing is adopted.

(b) Under possible side payments, the platform’s gross payoff under either partial or full infor-

mation sharing is given by

2π2

(k+6)2
+

(α+(2s− r)ℓ)2v1 + ℓ2v2
8

Proof. See Appendix A.4. □

Part (a) of Proposition 3 highlights that the manufacturer’s production diseconomy is a necessary

condition for full information sharing. Specifically, full information sharing is induced when the

upstream production diseconomy is sufficiently large. This result can be explained as follows. As

the manufacturer’s production diseconomy becomes large, i.e., as k increases, the manufacturer

can reduce more production costs under full information sharing compared to partial information

sharing, enabling the manufacturer to cover the side payments to the retailer and the platform.

Part (b) shows the platform’s gross payoff, accounting for possible side payments. Specifically,

the terms 2π2

(k+6)2
and (α+(2s−r)ℓ)2v1+ℓ2v2

8
arise from the public prior information and the platform’s

private information, respectively.

The literature (e.g., Ha et al. (2011), Shang et al. (2016)) has examined the economic incen-

tives for downstream companies to share information with upstream companies in a supply chain,

demonstrating that side payments between firms are effective in inducing information sharing.
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Propositions 2 and 3 extend the literature by analyzing the economic incentives for a platform to

share information with companies in a supply chain. Specifically, a platform also needs to be incen-

tivized to share information with upstream firms, facilitated through side payments from these

firms. In practice, such side payments can take the form of information subscription fees paid by

upstream firms to the platform to allow API integration. This arrangement is feasible only when

the upstream production diseconomy is sufficiently large.

Next, we consider the platform’s problem of maximizing its net payoff, i.e., the platform’s gross

payoff minus the information cost wa, by optimizing over the accuracy a as follows:

max
a∈R+

{ 2π2

(k+6)2
+

(α+(2s− r)ℓ)2v1(a)+ ℓ2v2(a)

8
− wa

}
. (10)

The term (α+(2s−r)ℓ)2v1(a)+ℓ2v2(a)

8
in (10) represents the platform’s payoff surplus due to sharing

its private signal, which increases as the prediction accuracy a increases. A key parameter in the

objective function (10) is the sensitivity coefficient ℓ. As the coefficient ℓ increases, meaning that

the retailer becomes more sensitive to freight rejection risks, the term 2π2

(k+6)2
(which represents the

platform’s payoff generated by prior information) decreases because the parameter π is decreasing

in ℓ, while the term (α+(2s−r)ℓ)2v1(a)+ℓ2v2(a)

8
is increasing in ℓ. Furthermore, we consider the following

inequality to ensure that the platform’s optimal prediction accuracy is positive:

w ≤ η2(α+(2s− r)ℓ)2

8
. (11)

Proposition 4. For single supply chain, the platform’s optimal prediction accuracy a∗ has the

following properties:

(a) Under (11), the platform’s objective function (10) is quasi-concave, and the optimal prediction

accuracy a∗ is unique.

(b) The optimal prediction accuracy a∗ increases as the sensitivity coefficient ℓ of freight rejection

increases.

(c) Under the optimal prediction accuracy a∗, the retailer’s and platform’s net payoffs initially

decrease and then increase, whereas the manufacturer’s net payoff decreases as the sensitivity coef-

ficient ℓ of freight rejection increases.

Proof. See Appendix B.3. □

Part (a) of Proposition 4 characterizes the quasi-concavity of the platform’s objective function

(10), which ensures the uniqueness of the platform’s optimal prediction accuracy. Part (b) presents

the comparative statics of the platform’s optimal prediction accuracy a∗ with respect to the sen-

sitivity coefficient ℓ of freight rejection. Specifically, as ℓ increases, it becomes optimal for the
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platform to improve its private prediction accuracy because the platform exploits more business

value from a more accurate signal by increasing the responsiveness of the supply chain’s equilib-

rium retail quantity. Part (c) characterizes the behavior of each players’ payoff (considering the

possible side payments) under the platform’s optimal prediction accuracy as ℓ increases; see Figure

1. Interestingly, we find that the retailer’s payoff initially decreases and then increases with ℓ, indi-

cating that a higher sensitivity to freight rejection can benefit the retailer. This result contradicts

the conventional understanding of the negative impact of freight rejection risks on shippers, as

discussed in the literature (Scott 2015, Caplice 2021). This finding arises from the fact that, under

the platform’s information sharing, the retailer’s payoff surplus generated by the private signal

(i.e., (α+(2s−r)ℓ)2v1(a
∗)+ℓ2v2(a

∗)
16

) actually increases with ℓ. Similarly, the platform’s payoff also ini-

tially decreases and then increases with ℓ. However, the manufacturer’s payoff always decreases as

the sensitivity coefficient ℓ increases, regardless of whether the manufacturer offers side payments

to induce information sharing.

Proposition 4 is closely related to ongoing debates in the literature on how to manage freight

rejection risks (e.g., Scott et al. (2017), Acocella (2022)). Specifically, a few solutions have been

proposed to reduce the sensitivity coefficient ℓ of freight rejection, such as through flexible freight

contracts. This paper complements the existing literature by offering a new solution—improving

shippers’ responsiveness to freight rejection through information sharing by digital freight plat-

forms. The non-monotonic behavior of the retailer’s net payoff also reveals interactions between

existing solutions in the literature and our proposed solution. Notably, we find that existing

approaches aimed at reducing ℓ may harm the retailer under the platform’s information sharing

arrangement. For example, in Figure 1(a), we see that if the original value of ℓ is 0.25, then the

retailer experiences a decrease in her net payoff when ℓ is reduced to 0.2. This result implies that

information sharing by the platform may lead to a negative spillover effect on the effectiveness of

other supply chain solutions for addressing freight rejection. As such, firms in supply chains should

be cautious about the mixed use of different solutions for freight rejection.

We also explore an extension of the main model in Appendix C by considering the probability of

freight rejection as dependent on the retailer’s order quantity. Empirical studies (e.g., Scott et al.

(2017), Acocella (2022)) have shown that a carrier’s probability of freight rejection increases as a

shipper’s cargo volume increases, due to the added operational complexity associated with larger

cargo volumes. Motivated by this observation, we assume that the probability of freight rejection

decreases as the retailer’s order quantity decreases. Our analysis shows that the main insights

continue to hold when the sensitivity of the probability of freight rejection is not too high.
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Figure 1 The behavior of each player’s payoff for different values ℓ ∈ (0.1,0.25), where u = 12, s = 5, c = 0, α =

0.1, η = 2, k = 3,w = 0.05, r = 2. Figure (a) depicts the retailer’ and the platform’s payoffs. Figure (b)

visualizes the manufacturer’s payoff, with possible side payments depending on the coefficient k of

production diseconomy.
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5. Competing Supply Chains

In this section, we consider information sharing by a digital freight platform in a competitive setting.

Following the literature (Ha et al. 2011, 2017, Liu et al. 2021), we extend the main model to consider

two competing supply chains. Each supply chain i∈ 1,2 consists of a retailer i and a manufacturer

i, and the two retailers sell substitute products to customers in a Cournot competition. The market

clearing price pi for retailer i is given by:

pi = u− qi − γ qj,

where u is a constant, γ ∈ (0,1) is the coefficient of competition intensity, and (qi, qj) are the retail

quantities of retailer i and retailer j, respectively.

The sequence of events in this generalized model with competition is as follows. First, the

platform selects the accuracy a of the private signal Ψ and decides the information arrangement

Yi ∈ {N,P,F} for each supply chain i = 1,2. Second, the manufacturer i in each supply chain

sets the wholesale price wi, and the platform announces the brokerage fee ρi for retailer i through

a Nash game. Finally, each retailer i determines the order quantity qi. Our consideration of the

platform charging heterogeneous brokerage fees for different retailers is motivated by real-world

practices—namely, a digital freight platform negotiates privately with different shippers to settle

individual brokerage fees in order to maximize revenue. Moreover, the brokerage fee ρi for retailer
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i is not observable for retailer j, and the platform is not allowed to disclose ρi to retailer j due to

privacy restrictions (Coughlan and Wernerfelt 1989, Liu et al. 2021).

For analytical convenience, we assume that competing supply chains have symmetric costs.

Specifically, both retailers have the same contracted freight rate r and the same probability δ(S)

of freight rejection. Furthermore, both manufacturers have identical production costs cq+ kq2/2.

Next, we analyze the equilibrium retail quantities for competing supply chains. Due to the

aforementioned privacy restrictions, the retailer i and the manufacturer i in a focal supply chain

i do not know rival supply chain j’s retail quantity when making their own decisions. Following

the literature (e.g., Ha et al. (2011), Shang et al. (2016), Ha et al. (2017)), we assume that retailer

i and manufacturer i form a common conjecture qj about the retail quantity of the rival supply

chain j’. Following the analysis of single supply chain, we can derive supply chain i’s best (retail

quantity) response function q̂Yi
i (qj) given its information arrangement Yi ∈ {N,P,F}. Similarly, by

assuming that retailer j and manufacturer j have a common conjecture qi about focal supply chain

i’s retail quantity, we derive rival supply chain j’s response function q̂
Yj

j (qi) given its information

arrangement Yj ∈ {N,P,F}. We then determine the Bayesian Nash equilibrium (BNE) retail

quantities that satisfy both response functions q̂Yi
i (qj) and q̂

Yj

j (qi)}. Denoting the equilibrium retail

quantities by q
Yi,Yj

i and q
Yj ,Yi

j , we have the following result.

Proposition 5. In competing supply chains, there is a unique pair of Bayesian Nash equilibrium

retail quantities given as follows:

q
Yi,Yj

i =
π

γ+ k+6
+ ϕ

Yi,Yj

i0
E
[
ϵ2
]
+ ϕ

Yi,Yj

i1
E [ϵ|Ψ] + ϕ

Yi,Yj

i2
E
[
ϵ2|Ψ

]
,

q
Yj ,Yi

j =
π

γ+ k+6
+ ϕ

Yj ,Yi

j0
E
[
ϵ2
]
+ ϕ

Yj ,Yi

j1
E [ϵ|Ψ] + ϕ

Yj ,Yi

j2
E
[
ϵ2|Ψ

]
,

where the coefficients ϕ
Yi,Yj

i =
(
ϕ
Yi,Yj

i0
, ϕ

Yi,Yj

i1
, ϕ

Yi,Yj

i2

)
and ϕ

Yj ,Yi

j =
(
ϕ
Yj ,Yi

j0
, ϕ

Yj ,Yi

j1
, ϕ

Yj ,Yi

j2

)
are

shown in Table 1.

Proof. See Appendix B.1. □

Proposition 5 shows that each supply chain i’s equilibrium retail quantity is a linear combination

of the terms E [ϵ2], E [ϵ|Ψ], and E [ϵ2|Ψ] conditioned on public prior information and private posterior

information. The weights ϕ
Yi,Yj

i0
, ϕ

Yi,Yj

i1
, and ϕ

Yi,Yj

i2
represent the response factors in the supply

chain i’s equilibrium retail quantity for each of the expected noisy terms.

Based on Proposition 5, we derive the ex-ante payoffs for all players. Specifically, given rival

supply chain j’s retail quantity q
Yj ,Yi

j , we rewrite retailer i’s market clearing price as follows:

pi = (u− γ q
Yj ,Yi

j ) − qi = û(ϕ
Yj ,Yi

j ) − qi,
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Table 1 The coefficients in competing supply chains’ Bayesian Nash equilibrium retail quantities

(Yi,Yj) ϕ
Yi,Yj

i0
φ

Yi,Yj

i1
ϕ
Yi,Yj

i2
Φ

Yj ,Yi

j0
φ

Yj ,Yi

j1
ϕ
Yj ,Yi

j2

(N,N) 0 0 0 0 0 0

(P,N) ℓ
4

(r−2s)ℓ−α

4
− ℓ

4
0 0 0

(F,N) ℓ
k+6

(r−2s)ℓ−α

k+6
− ℓ

k+6
0 0 0

(N,P) 0 0 0 ℓ
4

(r−2s)ℓ−α

4
− ℓ

4

(P,P) ℓ
γ+4

(r−2s)ℓ−α

γ+4
− ℓ

γ+4
ℓ

γ+4

(r−2s)ℓ−α

γ+4
− ℓ

γ+4

(F,P) (γ−4)ℓ

γ2−4(k+6)

(γ−4)((r−2s)ℓ−α)

γ2−4(k+6)

(γ−4)ℓ

24−γ2+4k

ℓ(k+6−γ)

24−γ2+4k

(k+6−γ)((r−2s)ℓ−α)

24−γ2+4k

ℓ(γ−k−6)

24−γ2+4k

(N,F) 0 0 0 ℓ
k+6

(r−2s)ℓ−α

k+6
− ℓ

k+6

(P,F) ℓ(k+6−γ)

24−γ2+4k

(k+6−γ)((r−2s)ℓ−α)

24−γ2+4k

ℓ(γ−k−6)

24−γ2+4k

(γ−4)ℓ

γ2−4(k+6)

(γ−4)((r−2s)ℓ−α)

γ2−4(k+6)

(γ−4)ℓ

24−γ2+4k

(F,F) ℓ
γ+k+6

(r−2s)ℓ−α

γ+k+6
− ℓ

γ+k+6
ℓ

γ+k+6

(r−2s)ℓ−α

γ+k+6
− ℓ

γ+k+6

where û(ϕ
Yj ,Yi

j ) = u − γ( π
γ+k+6

+ ϕ
Yj ,Yi

j0
E [ϵ2] + ϕ

Yj ,Yi

j1
E [ϵ|Ψ] + ϕ

Yj ,Yi

j2
E [ϵ2|Ψ]) represents supply

chain i’s potential market size, which is a function of the coefficients ϕ
Yj ,Yi

j capturing rival supply

chain j’s competitive response. Following the analysis of single supply chain, we can derive retailer

i’s and manufacturer i’s payoffs, denoted by ΠYi
Ri
(ϕ

Yj ,Yi

j ) and ΠYi
Mi

(ϕ
Yj ,Yi

j ), respectively, as well

as the platform’s payoff for serving retailer i, denoted by ΠYiPi(ϕ
Yj ,Yij). A summary of the

expressions for ΠYi
Ri
(ϕ

Yj ,Yi

j ), ΠYi
Mi

(ϕ
Yj ,Yi

j ), and ΠYi
Pi
(ϕ

Yj ,Yi

j ) is provided in Appendix B.2.

Similar to the single supply chain, we next examine the effect of information sharing on a focal

supply chain i. Specifically, for Yi ∈ {P,F}, we quantify the the effect of information sharing on

retailer i and manufacturer i by using their payoff differences:

ΠYi
Ri
(ϕ

Yj ,Yi

j ) − ΠN
Ri
(ϕ

Yj ,N

j ), ΠYi
Mi

(ϕ
Yj ,Yi

j ) − ΠN
Mi

(ϕ
Yj ,N

j ). (12)

We can also assess the effect of information sharing with focal supply chain i on the platform as

follows: [
ΠYi

Pi
(ϕ

Yj ,Yi

j ) + Π
Yj

Pj
(ϕ

Yi,Yj

i )
]
−

[
ΠN

Pi
(ϕ

Yj ,N

j ) + Π
Yj

Pj
(ϕ

N,Yj

i )
]
, (13)

where the term
[
ΠYi

Pi
(ϕ

Yj ,Yi

j ) + Π
Yj

Pj
(ϕ

Yi,Yj

i )
]

represents the platform’s payoff from serving

both retailers when sharing information with supply chain i, i.e., Yi ∈ {F,P}, and the term[
ΠN

Pi
(ϕ

Yj ,N

j ) + Π
Yj

Pj
(ϕ

N,Yj

i )
]
represents its payoff without sharing information to supply chain i,

i.e., Yi =N.

Proposition 6. Compared to the baseline of no information sharing, we have the following:

(a) Partial information sharing always benefits retailer i and the platform, but hurts manufac-

turer i regardless of rival supply chain j’s information sharing arrangement.
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(b) Full information sharing always benefits retailer i and manufacturer i, but hurts the platform

if and only if rival supply chain j’s information arrangement is partial information sharing and

the upstream production diseconomy is sufficiently large, i.e., k > γ3+4γ2−64γ+64
8γ

.

Proof. See Appendix B.4. □

Part (a) of Proposition 6 shows that the retailers and the platform are always incentivized to

adopt partial information sharing. This is because they obtain a payoff surplus by enhancing the

responsiveness of their equilibrium decisions to freight rejection. Part (b) of Proposition 6 shows

that full information sharing can hurt the platform if and only if rival supply chain j’s information

arrangement is partial information sharing and the upstream production diseconomy is sufficiently

large, i.e., k ≥ γ3+4γ2−80γ+64
8γ

. This occurs because the DME reduces the platform’s revenue from

retailer j, i.e., ΠP
Pj
(ϕFP

i ) − ΠP
Pj
(ϕNP

i ) < 0. Notably, this result differs from the previous finding

in the single supply chain setting, as shown in Proposition 2(b). An important implication of

Proposition 6 is that no information sharing is dominated by partial information sharing for each

of the competing supply chains. Hence, it is safe to ignore the baseline strategy in the following

analysis.

Next, we explore the effect of full information sharing relative to partial information sharing.

Specifically, given rival supply chain j’s information sharing arrangement Yj ∈ {P,F}, we assess

the effect of full information sharing on retailer i and manufacturer i as follows:

ΠF
Ri
(ϕ

Yj ,F

j ) − ΠP
Ri
(ϕ

Yj ,P

j ), ΠF
Mi

(ϕ
Yj ,F

j ) − ΠP
Mi

(ϕ
Yj ,P

j ).

Moreover, full information sharing by the platform to the focal supply chain i also affects its own

payoff as follows: [
ΠF

Pi
(ϕ

Yj ,F

j ) + Π
Yj

Pj
(ϕ

F,Yj

i )] −
[
ΠP

Pi
(ϕ

Yj ,P

j ) + Π
Yj

Pj
(ϕ

P,Yj

i )
]

=
[
ΠF

Pi
(ϕ

Yj ,F

j ) − ΠP
Pi
(ϕ

Yj ,P

j )]︸ ︷︷ ︸
Direct effect

+
[
Π

Yj

Pj
(ϕ

F,Yj

i )−Π
Yj

Pj
(ϕ

P,Yj

i )
]︸ ︷︷ ︸

Side effect

,

where the term ΠF
Pi
(ϕ

Yj ,F

j ) − ΠP
Pi
(ϕ

Yj ,P

j ) represents the direct effect of full information sharing to

focal supply chain i on the platform’s revenue from serving retailer i, and the term Π
Yj

Pj
(ϕ

F,Yj

i )−
Π

Yj

Pj
(ϕ

P,Yj

i ) represents the side effect of full information sharing on the platform’s revenue from

serving retailer j.

Proposition 7. In competing supply chains, relative to partial information sharing, we have

the following:

(a) Full information sharing in supply chain i generates more value for manufacturer i (i.e.,

ΠF
Mi

(ϕ
Yj ,F

j )>ΠP
Mi

(ϕ
Yj ,P

j )), but generates less value for retailer i (i.e., ΠF
Ri
(ϕ

Yj ,F

j )<ΠP
Ri
(ϕ

Yj ,P

j ))

, regardless of rival supply chain j’s information sharing arrangement (i.e., Yj ∈ {P,F}).
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(b) The direct effect of full information sharing generates less value for the platform (i.e.,

ΠF
Pi
(ϕ

Yj ,F

j )<ΠP
Pi
(ϕ

Yj ,P

j )), the side effect generates more value for the platform (i.e., Π
Yj

Pj
(ϕ

F,Yj

i )>

Pi
Yj

Pj
(ϕ

P,Yj

i )), and the overall effect generates less value for the platform (i.e., ΠF
Pi
(ϕ

Yj ,F

j ) +

Π
Yj

Pj
(ϕ

F,Yj

i ]<ΠP
Pi
(ϕ

Yj ,P

j ) + Π
Yj

Pj
(ϕ

P,Yj

i )), regardless of rival supply chain j’s information sharing

arrangement (i.e., Yj ∈ {P,F}).

(c) Full information sharing is induced in supply chain i under manufacturer i’s side payments

TRi
and TPi

to retailer i and the platform, respectively. When rival supply chain j has partial

information sharing (resp., full information sharing), full information sharing will be adopted in

the focal supply chain i if and only if k > κP (resp., k > κF), where κP and κF are two constants.

Proof. See Appendix B.5. □

From Proposition 7(a) we find that the effect of full information sharing on retailer i and man-

ufacturer i is similar to the result given in Proposition 2. It is straightforward to verify that the

full information sharing with the focal supply chain i makes its own demand less variable (i.e.,

Var [q̂
P,Yj

i ] ≥ Var [q̂
F,Yj

i ]), resulting in a negative direct effect on the platform. At the same time, it

makes rival supply chain j’s equilibrium retail demand more variable (i.e., Var [q̂
Yj ,F

j ] ≥ Var [q̂
Yj ,P

j ]),

resulting in a positive side effect on the platform. Moreover, as shown in Proposition 7(b), the

negative direct effect on the platform outweighs the positive side effect, which means full infor-

mation sharing is ultimately less valuable to the platform relative to partial information sharing.

Furthermore, from Proposition 7(a) and (b), we conclude that manufacturer i must provide side

payments TRi
and TPi

to retailer i and the platform, respectively, to induce full information shar-

ing. With these possible side payments, manufacturer i’s net value under full information sharing

is positive only when his production diseconomoy is sufficiently large, i.e., k > κYj ,Yj ∈ {P,F}.
The definitions of κP and κF are provided in Appendix B.5.

It should be noted that Propositions 6 and 7 generalize the previous results on the effects of

information sharing in supply chains (see Propositions 4 and 5 in Ha et al. (2011)) considering the

impact of full information sharing on the platform itself and decomposing the overall effect into

direct and side effects. Using these results, we can now characterize the equilibrium information

sharing strategies for competing supply chains. Specifically, each supply chain i’s contract choice

is equivalent to manufacturer i selecting from the action space Yi ∈ {P,F}, according to the

decision rule shown in Proposition 7(c). Thus, the two manufacturers’ choices of information sharing

strategies can be viewed as a Nash game with simultaneous moves from their respective action

spaces Yi ×Yj ∈ {P,F} × {P,F}. It is straightforward to verify that κP < κF. By defining the

terms ζFF := 4(6−γ+k)2

(4(k+6)−γ2)2
, ζFP := 2

(γ+4)2
+ 2(6−γ+k)2

(4(k+6)−γ2)2
, and ζPP := 4

(γ+4)2
, we can summarize the

platform’s equilibrium information sharing strategies as follows.
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Proposition 8. For competing supply chains, we have the following:

(a) The equilibrium information sharing choices are as follows: (i) if k≥ κF, then (F,F) is the

unique equilibrium strategy; (ii) if κP ≤ k ≤ κF, then (P,F) and (F,P) are two possible equilibria

strategies; (iii) if k < κP, then (P,P) is the unique equilibrium strategy.

(b) With possible side payments, the platform’s gross payoff is given by

4π2

(γ+ k+6)2
+ ((α+(2s− r)ℓ)2v1 + ℓ2v2)ζ, (14)

where the parameter ζ is defined as follows: if k > κF, then ζ = ζFF; if κP ≤ k≤ κF, then ζ = ζFP;

otherwise, ζ = ζPP.

(c) The thresholds (κP, κF) given in part (a) are both decreasing as the competition intensity γ

increases, and their difference, κF − κP, increases as γ increases.

Part (a) of Proposition 8 characterizes the conditions for equilibrium information sharing strate-

gies to competing supply chains, in terms of the parameter k of production diseconomy and two

thresholds {κP, κF} (which further depend on γ); see Figure 2(a). First, if k is sufficiently large

such that k > κF, the manufacturer in each supply chain is incentivized to induce full information

sharing, regardless of the rival supply chain’s information arrangement. Consequently, the platform

implements a complete symmetric information sharing strategy for competing supply chains, i.e.,

(F,F) is the unique equilibrium. Second, if k is sufficiently small such that k < κP, the manufac-

turer in each supply chain is not incentivized to induce full information sharing, regardless of the

rival supply chain’s information arrangement. As a result, the platform implements a symmetric

partial information sharing strategy, i.e., (P,P) is the unique equilibrium. Third, if k is moderate

and satisfies κP < k < κF, the manufacturer in a focal supply chain induces full information shar-

ing only when the rival supply chain adopts partial information sharing. In this case, one supply

chain adopts full information sharing while the other adopts partial information sharing, resulting

in two possible equilibria: (P,F) and (F,P). Hence, the platform employs an asymmetric mixed

information sharing strategy.

Part (b) of Proposition 8 summarizes the platform’s gross payoffs under each equilibrium infor-

mation sharing format. In (14), the term 4π2

(γ+k+6)2
represents the value derived from public prior

information, while the term ((α+(2s−r)ℓ)2v1+ℓ2v2)ζ represents the value of the platform’s private

information about spot freight rates. Additionally, the constant ṽ, which represents the marginal

value of the platform’s information sharing, varies as the equilibrium information sharing format

changes. It is straightforward to verify that ζ decreases as the equilibrium information sharing for-

mat transitions from symmetric full information sharing to symmetric partial information sharing.
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Part (c) of Proposition 8 also reveals the impact of supply chain competition on the equilibrium

information sharing formats; see Figure 2(a). As the competition intensity γ increases, symmetric

partial information sharing becomes less likely to be chosen (since κP decreases with increasing

γ), while symmetric full information sharing becomes more likely (since κF also decreases with

increasing γ). In addition, asymmetric mixed information sharing is more likely to be adopted as

well since the difference κF −κP is increasing in γ.

Figure 2 The platform’s information sharing for competing supply chains. Figure (a) depicts the boundary con-

ditions for equilibrium information sharing strategies in the parameter space (γ, k). Figure (b) visualizes

the comparative statics of the platform’s optimal prediction accuracy a∗∗ for different values of γ and

fixed k, where γP and γF are unique solutions for the equations κP(γ) = k and κF(γ) = k
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Based on the above results, we are now ready to examine the platform’s problem of maximizing

its net payoff, which is the platform’s equilibrium gross payoff minus the information cost, by

optimizing the accuracy a of its private information. Specifically, the platform solves the following

problem:

max
a≥4

{
4π2

(γ+ k+6)2
+ ((α+(2s− r)ℓ)2v1(a) + ℓ2v2(a))ζ − wa

}
,

Let a∗∗ denote the platform’s optimal accuracy decision in competing supply chains. Recall from

Proposition 8 that the parameter ζ varies as the platform’s equilibrium information sharing for-

mats change. To ensure that the optimal accuracy decision a∗∗ is positive, we make the following

assumption:

w≤ ζPP(α+(2s− r)ℓ)2η2.
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For all the equilibrium information sharing formats, we define the following solution: aFF :=

argmaxa∈R+
{((α + (2s − r)ℓ)2v1(a) + ℓ2v2(a))ζ

FF − wa}, aFP := argmaxa∈R+
{((α + (2s −

r)ℓ)2v1(a)+ℓ2v2(a))ζ
FP−wa} and aPP := argmaxa∈R+

{((α+(2s−r)ℓ)2v1(a)+ℓ2v2(a))ζ
PP−wa}.

Proposition 9. For competing supply chains,

(a) The platform’s optimal prediction accuracy a∗∗ has a piecewise form as follows:

a∗∗ =

 aFF, if k > κF,
aFP, if κP ≤ k ≤ κF,
aPP, if k < κP,

where aFF ≥ aFP ≥ aPP.

(b) aFF, aFP and aPP all increase as the sensitivity coefficient ℓ of freight rejection increases.

(c) aFF, aFP and aPP all decrease as the coefficient γ of competition intensity increases.

Proof. See Appendix B.7. □

From Proposition 9 we find that in competing supply chains, the platform’s optimal prediction

accuracy has a piecewise form that depends on the coefficient k of production diseconomy. Specifi-

cally, a∗∗ is composed of the three terms aFF, aFP and aPP, which represent the optimal prediction

accuracy under symmetric full information sharing, asymmetric mixed information sharing, and

symmetric partial information sharing, respectively.

Furthermore, since ζPP ≤ ζFP ≤ ζFF, we also obtain the inequality aPP ≤ aFP ≤ aFF, indicating

that the platform would improve the accuracy of its private information as the information sharing

format transitions from symmetric full information sharing to symmetric partial information shar-

ing. Additionally, Proposition 9(b) shows that the terms aFF, aFP, and aPP are increasing with

respect to the sensitivity coefficient ℓ of freight rejection, which is consistent with the previous

finding in Proposition 4.

Proposition 9(c) reveals the impact of supply chain competition on the platform’s optimal pre-

diction accuracy decision. As the coefficient γ of competition intensity increases, the marginal

values ζFF, ζFP, and ζPP associated with the platform’s information sharing strategies decrease,

compelling the platform to reduce prediction accuracy under every equilibrium information sharing

format (i.e., aFF, aFP, and aPP all decrease as γ increases). Interestingly, the monotonic behavior

of aFF, aFP, and aPP with respect to γ does not necessarily imply that the platform’s optimal

prediction accuracy decision a∗∗ is decreasing in γ. In particular, as illustrated by Figure 2(b),

although the platform’s prediction accuracy decision is decreasing in γ under every equilibrium

format, there are jumps in prediction accuracy when the platform switches between equilibrium
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information sharing formats. For example, a∗∗ jumps from aFP to aFF as the platform switches

from an asymmetric mixed information sharing to a symmetric full information sharing.

In prior studies on information sharing (e.g., Ha et al. (2011, 2017) and Liu et al. (2021)),

the prediction accuracy is assumed to be exogenous. Proposition 9 complements these studies

by endogenizing the prediction accuracy as the platform’s decision and revealing the interesting

role of supply chain competition in shaping the platform’s prediction accuracy. Intuitively, one

might expect the platform to increase prediction accuracy as competition intensifies because the

signal becomes more attractive to supply chains that want to gain a competitive advantage. As

shown by Proposition 9, this expectation is partially correct because as the competition increases,

the platform experiences sudden stepwise improvements in its prediction accuracy as it switches

equilibrium information sharing formats. However, under every equilibrium information sharing

format, the platform’s optimal prediction accuracy decreases as the competition intensity increases.

This result highlights the need for a digital freight brokerage platform to be cautious in strategically

investing in prediction accuracy for different degrees of supply chain competition.

6. Concluding Remarks

Motivated by real-world supply chain logistics practices, this paper examined how digital freight

platforms share their information on spot freight rates with companies in supply chains to improve

their operations in anticipation of freight rejection. We characterized the equilibrium information

sharing strategy (either partial or full information sharing) by a digital freight platform for a single

supply chain consisting of a retailer and a manufacturer, and explored the platform’s optimal

prediction accuracy under the equilibrium strategy.

We then extended our analysis by considering information sharing of a digit freight platform to

competing supply chains. We identified three information sharing formats: (a) symmetric full infor-

mation sharing, (b) asymmetric mixed information sharing, and (c) symmetric partial information

sharing. As the upstream production diseconomy increases, the platform gradually shifts from sym-

metric partial information sharing to symmetric full information sharing. Moreover, the impact

of increasing the sensitivity coefficient of freight rejection on the platform’s optimal prediction

accuracy continues to hold in the case of supply chain competition.

This research provides several insights for digital freight platforms looking to implement an infor-

mation sharing program to supply chains. First, our results indicate that the core of a platform’s

information sharing program lies in its prediction accuracy, suggesting that a platform should invest

more in improving prediction accuracy as the probability of freight rejection increases. Second, the

platform should be aware of the impact of supply chain competition on its investment in prediction

accuracy. Unlike prior findings in the literature (e.g., Ha et al. (2011), Huang et al. (2018), Ha et al.
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(2022), Shi et al. (2021)), we show that a significant increase in competition intensity can lead to

sudden stepwise improvements in prediction accuracy as the platform switches between equilibrium

information sharing formats. However, a slight increase in competition intensity may discourage

the platform from improving its prediction accuracy under every equilibrium information sharing

format. Third, this work provides insights into the ongoing debates on freight rejection (Scott et al.

2017, Acocella 2022) by demonstrating that information sharing by digital freight platforms can

serve as an effective solution for managing freight rejection. However, supply chain practitioners

should be careful with mixed use of platforms’ information sharing and other existing solution (e.g.,

flexible freight contract) because of the negative spillover effect of platforms’ information sharing.

This paper can be extended in several ways. First, motivated by the practice of the online

freight platform mentioned in the introduction—specifically, that most of the platform’s clients are

downstream retailers in supply chains—we assume that the platform directly shares information

with retailers under partial information sharing. Considering that a platform’s clients can also be

upstream manufacturers in practice, it would be interesting to extend our model by analyzing

partial information sharing exclusively with upstream manufacturers. Second, the main findings

of this paper suggest that the double marginalization effect in a supply chain subject to freight

rejection can be affected by the probability of freight rejection. A potential future research direction

would be to conduct an empirical study to examine the impact of freight rejection probability on

double marginalization within supply chains.
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Kurtuluş, Mümin, Sezer Ülkü, Beril L Toktay. 2012. The value of collaborative forecasting in supply chains.

Manufacturing & Service Operations Management 14(1) 82–98.

Lee, Chung-Yee, Christopher S Tang, Rui Yin, Jaehyung An. 2015. Fractional price matching policies arising

from the ocean freight service industry. Production and Operations Management 24(7) 1118–1134.

Li, Jianbin, Yuting Zheng, Bin Dai, Jiang Yu. 2020. Implications of matching and pricing strategies for

multiple-delivery-points service in a freight o2o platform. Transportation Research Part E: Logistics

and Transportation Review 136 101871.

Li, Lode. 2002. Information sharing in a supply chain with horizontal competition. Management Science

48(9) 1196–1212.



Shi et al.: Managing Freight Rejection in Supply Chains with Production Diseconomy
29

Li, Lode, Hongtao Zhang. 2008. Confidentiality and information sharing in supply chain coordination.

Management science 54(8) 1467–1481.

Li, Tian, Hongtao Zhang. 2023. Gaining by ceding - bounded wholesale pricing for information sharing in a

supply chain. Production and Operations Management 32(3) 829–843.

Liu, Zekun, Dennis J Zhang, Fuqiang Zhang. 2021. Information sharing on retail platforms. Manufacturing

& Service Operations Management 23(3) 606–619.

Lu, Tao, Ying-Ju Chen, Jan C Fransoo, Chung-Yee Lee. 2020. Shipping to heterogeneous customers with

competing carriers. Manufacturing & Service Operations Management 22(4) 850–867.

Lu, Tao, Jan C Fransoo, Chung-Yee Lee. 2017. Carrier portfolio management for shipping seasonal products.

Operations Research 65(5) 1250–1266.

Miller, John, Yu Nie, Xiaobo Liu. 2020. Hyperpath truck routing in an online freight exchange platform.

Transportation Science 54(6) 1676–1696.

Min, Daiki, Yuncheol Kang. 2021. A learning-based approach for dynamic freight brokerages with transfer

and territory-based assignment. Computers & Industrial Engineering 153 107042.

Mollick, Andre Varella. 2004. Production smoothing in the japanese vehicle industry. International Journal

of Production Economics 91(1) 63–74.

Pyzyk, Katie. 2021. Tms integrations with digital freight brokers are gaining momen-

tum. https://www.supplychaindive.com/news/digital-broker-tms-integrations-api-supply-chain-

transportation/599477/ .

Scott, Alex. 2015. The value of information sharing for truckload shippers. Transportation Research Part E:

Logistics and Transportation Review 81 203–214.

Scott, Alex, Chris Parker, Christopher W Craighead. 2017. Service refusals in supply chains: Drivers and

deterrents of freight rejection. Transportation Science 51(4) 1086–1101.

Shang, Weixin, Albert Y Ha, Shilu Tong. 2016. Information sharing in a supply chain with a common

retailer. Management Science 62(1) 245–263.

Shi, Ye, Layth C Alwan, Srinivasan Raghunathan, Yugang Yu, Xiaohang Yue. 2021. Mobile consumer

scanning technology: A replacement for interorganizational information systems for demand information

learning in supply chains? Information Systems Research 32(4) 1431–1449.

Tsai, Mei-Ting, Jean-Daniel Saphores, Amelia Regan. 2011. Valuation of freight transportation contracts

under uncertainty. Transportation Research Part E: Logistics and Transportation Review 47(6) 920–

932.

Tsunoda, Yushi, Yusuke Zennyo. 2021. Platform information transparency and effects on third-party sup-

pliers and offline retailers. Production and Operations Management 30(11) 4219–4235.

Zhao, Xia, Ling Xue, Fuqiang Zhang. 2014. Strategic information sharing in competing channels. Production

and Operations Management 23(10) 1706–1718.



Shi et al.: Managing Freight Rejection in Supply Chains with Production Diseconomy
30

Zhou, Zenan, Xiang Wan. 2022. Does the sharing economy technology disrupt incumbents? Exploring the

influences of mobile digital freight matching platforms on road freight logistics firms. Production and

Operations Management 31(1) 117–137.



Shi et al.: Managing Freight Rejection in Supply Chains with Production Diseconomy
1

E-companion
The E-companion is organized as follows. All the proofs of the results for the single supply chain model

are shown in Appendix A. The proofs of the results for the competing supply chain model are shown in

Appendix B. Finally, an extension of the single supply chain model is studied in Appendix C.

Appendix A: Single Supply Chain

A.1. Proof of Lemma 1

We derive every player’s equilibrium decision in the baseline setting as follows. First, the retailer maximizes

the expected profit, E [(u− q−w− re)q] = q(c− q − ρ(α+ sℓ)−w + π), with the order quantity: q̃(w,ρ) =

1
2
(−αρ+ c− ρsℓ−w+π). Then, the manufacturer maximizes the expected profit, q̃(w,ρ)(w−c)− k

2
q̃(w,ρ)2,

with the wholesale price: w̃(q) = c+ (k+2)(π−ρ(α+sℓ))

k+4
. Meanwhile, the platform maximizes the expected profit,

E [ρ q̃(w,ρ)δ(S)|Ψ], with the brokerage fee: ρ(w) = c−w+π
2α+2sℓ

. By jointly considering the manufacturer’s and

platform’s best responses, we obtain:

wN = c+
π(k+2)

k+6
, ρN =

2π

(k+6)(α+ sℓ)

By substituting wN and ρN into q̃(·), we further have the supply chain’s equilibrium retail quantity:

qN =
π

k+6
.

Furthermore, based on the equilibrium decisions, we further obtain every player’s ex-ante payoffs shown in

(5). □

A.2. Proof of Proposition 1

We first prove the result in the case of partial information sharing. First, the

retailer maximizes the expected profit conditioned on Ψ, E [(u− q−w− rf (S)) q|Ψ] =

q (c−α(E [ϵ|Ψ]+ ρ)+ ℓ(E [ϵ|Ψ] r−E [ϵ|Ψ] (ρ+2s)−E [ϵ2|Ψ]+ η− ρs)− q−w+π), with the following order

quantity:

q̆(w,ρ,Ψ)=
1

2
(c−α(E [ϵ|Ψ]+ ρ)+ ℓ(E [ϵ|Ψ] r−E [ϵ|Ψ] (ρ+2s)−E

[
ϵ2|Ψ

]
+ η− ρs)−w+π). (15)

Given the conjecture w on the wholesale price, the platform maximizes the expected profit conditioned on

Ψ, E [ρδ(S) q̆(·)|Ψ], with the wholesale price:

ρ̆(w,Ψ)=
c−αE [ϵ|Ψ]+ ℓ(E [ϵ|Ψ] (r− 2s)−E [ϵ2|Ψ]+ η)−w+π

2(α+ ℓ(E [ϵ|Ψ]+ s))
.

Meanwhile, given the conjecture ρ on the brokerage fee (which is actually a function of Ψ), the manufacturer

maximizes the expected profit based solely on prior information E
[
q̆(·)(w− c)− k

2
q̆(·)2

]
, with the following

wholesale price:

w̆(ρ(Ψ)) = c+
(k+2)(−E [ρ(Ψ)(α+ ℓ(E [ϵ|Ψ]+ s)))] +π(k+2)

k+4
. (16)

By observing the two players’ best responses (15) and (16), we find that the following equilibrium decisions,

wP = c+
π(k+2)

k+6
, ρP =

(k+6)(ℓ(E [ϵ|Ψ] (r− 2s)−E [ϵ2|Ψ]+ η)−αE [ϵ|Ψ])+4π

2(k+6)(α+ ℓ(E [ϵ|Ψ]+ s))
, (17)
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which simultaneously fulfill these two response functions. Moreover, using the technique (Claim 1) in Ha

et al. (2011), we can prove the uniqueness of (wP, ρP). By substituting (wP, ρP) into q̆(·), we obtain the

supply chain’s equilibrium retail quantity in the case of partial information sharing as follows:

qP = qN +
1

4
(ℓ(E [ϵ|Ψ] (r− 2s)−E

[
ϵ2|Ψ

]
+ η)−αE [ϵ|Ψ]).

Moreover, we also obtain all the players’ payoffs as follows:

ΠP
R =ΠN

R +
v1(α− rℓ+2sℓ)2 + v2ℓ

2

16
,

ΠP
M =ΠN

M − kv1(α− rℓ+2sℓ)2 + kv2ℓ
2

32
,

ΠP
P =ΠN

P +
v1(α− rℓ+2sℓ)2 + v2ℓ

2

8

Next, we consider the case of full information sharing, in which the retailer’s optimal order quantity and

the platform’s optimal brokerage fee still follow q̆(·) and ρ̆(·), respectively. Then, the manufacturer maximizes

the expected profit conditioned on Ψ, E
[
q̆(·)(w− c)− k

2
q̆(·)2|Ψ

]
, with the following wholesale price:

w̆′(ρ) =
2(−αE [ϵ|Ψ]+ ℓ(E [ϵ|Ψ] (r− 2s)−E [ϵ2|Ψ]+ η)+π)

(k+6)(α+ ℓ(E [ϵ|Ψ]+ s))
. (18)

By jointly considering the response functions (15) and (18), we obtain the equilibrium wholesale price and

brokerage fee in the case of full information sharing:

wF = c+
(k+2)(π−αE [ϵ|Ψ]+ ℓ(E [ϵ|Ψ] (r− 2s)−E [ϵ2|Ψ]+ η))

k+6
, ρF =

2(π−αE [ϵ|Ψ]+ ℓ(E [ϵ|Ψ] (r− 2s)−E [ϵ2|Ψ]+ η))

(k+6)(α+ ℓ(E [ϵ|Ψ]+ s))
.

By substituting (wF, ρF) into q̆(·), we have the supply chain’s equilibrium retail quantity:

qF = qN +
ℓ(−(2s− r)E [ϵ|Ψ]−E [ϵ2|Ψ]+ η)−αE [ϵ|Ψ]

k+6
.

Moreover, all the players’ payoffs as follows:

ΠF
R =ΠN

R +
v1(α− rℓ+2sℓ)2 + v2ℓ

2

(k+6)2
,

ΠF
M =ΠN

M +
(k+4) (v1(α− rℓ+2sℓ)2 + v2ℓ

2)

2(k+6)2
,

ΠF
P =ΠN

P +
2(v1(α− rℓ+2sℓ)2 + v2ℓ

2)

(k+6)2
,

which completes the proof. □

A.3. Proof of Proposition 2

Based on Proposition 1, we have:

ΠP
R −ΠN

R > 0,ΠP
M −ΠN

M < 0, ΠP
P −ΠN

P > 0

ΠF
R −ΠN

R > 0,ΠF
M −ΠN

M > 0, ΠF
P −ΠN

P > 0.
(19)

Moreover, we also have:

ΠF
R −ΠP

R < 0,ΠF
P −ΠP

P < 0,ΠF
M −ΠP

M > 0, (20)

which completes the proof. □
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A.4. Proof of Proposition 3

From Proposition 1, we know that the manufacturer’s net value of full information sharing, under the side

payments to the retailer and the platform, is expressed by:

ΠF
M −ΠP

M +(ΠF
R −ΠP

R)+ (ΠF
P −ΠP

P ) =
(k+2)(k2 +4k− 28) (v1(α− rℓ+2sℓ)2 + v2ℓ

2)

32(k+6)2
, (21)

which is positive only when k > 2(2
√
2− 1).

Furthermore, the platform’s gross payoff with possible side payment is equivalent to ΠP
P = 2π2

(k+6)2
+

1
8
(v1(α− rℓ+2sℓ)2 + v2ℓ

2) . □

Appendix B: Competing Supply Chains

B.1. Proof of Proposition 5

We first consider a focal supply chain i’s best response function based on retailer i’s and manufacturer i’s

common conjecture qj about rival supply chain j’s retail quantity. Specifically, in the case of no information

sharing, the retailer i maximizes the expected profit, E [qi (−qi − γqj − r+u−w)], with the order quantity:

qNi (wi, ρi, qj) =
1

2
(c− γE [qj ]− ρi(α+ sℓ)−w+π) .

Given the conjecture about the wholesale price wi, the platform maximizes its expected profit,

E [ρi δ(S) q
N
i (wi, ρi, qj)|Ψ], with the following brokerage fee:

ρ∗
i (wi, qj) =

c− γE [qj ]−wi +π

2(α+ sℓ)
.

Meanwhile, given the conjecture about the brokerage fee ρi, the manufacturer i maximizes his expected

profit, E
[
(wi − c)qNi (wi, ρi, qj)− k

2
qNi (wi, ρi, qj)

2
]
, with the wholesale price:

w∗
i (ρi, qj) =

c(k+4)− γ(k+2)E [qj ] + (k+2)(π− ρ(α+ sℓ))

k+4
.

By jointly consider the response functions ρ∗
i (wi, qj) and w∗

i (ρi, qj), we obtain the equilibrium wholesale price

and brokerage fee, denoted by wN
i and ρN

i , in the case of no information sharing as follows:

wN
i =

c(k+6)− γ(k+2)E [qj ] +π(k+2)

k+6
, ρN

i =
2(π− γE [qj ])

(k+6)(α+ sℓ)
.

By substituting wN
i and ρN

i into qN(·), we obtain supply chain i’s best response function in the case of no

information sharing as follows:

q̂Ni (qj) =
π− γE [qj ]

k+6
. (22)

Apparently, the above analysis of supply chain i’s best response function is the same as that of single supply

chain’s equilibrium retail quantity shown in previous section.

Similarly, it can be shown that supply chain i’s equilibrium wholesale price and brokerage fee, denoted by

wP
i and ρP

i , in the case of partial information sharing as follows:

wP
i =

c(k+6)− γ(k+2)E [qj ] +π(k+2)

k+6
,

ρP
i =

−γ(k+6)E [qj |Ψ]+ (k+6)(ℓ(E [ϵ|Ψ] (r− 2s)−E [ϵ2|Ψ]+ η)−αE [ϵ|Ψ])+ γ(k+2)E [qj ] + 4π

2(k+6)(α+ ℓ(E [ϵ|Ψ]+ s))
.
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While, the supply chain i’s best response function in the case of partial information sharing is as follows:

q̂Pi (qj) =
−γ(k+6)E [qj |Ψ]+ (k+6)(ℓ(E [ϵ|Ψ] (r− 2s)−E [ϵ2|Ψ]+ η)−αE [ϵ|Ψ])+ γ(k+2)E [qj ] + 4π

4(k+6)
. (23)

Furthermore, supply chain i’s equilibrium wholesale price and brokerage fee, denoted by wF
i and ρF

i , in

the case of full information sharing as follows:

wF
i =

c(k+6)− γ(k+2)E [qj |Ψ]+ (k+2)(−αE [ϵ|Ψ]+ ℓ(E [ϵ|Ψ] (r− 2s)−E [ϵ2|Ψ]+ η)+π)

k+6
,

ρF
i =

2(−αE [ϵ|Ψ]− γE [qj |Ψ]+ ℓ(E [ϵ|Ψ] (r− 2s)−E [ϵ2|Ψ]+ η)+π)

(k+6)(α+ ℓ(E [ϵ|Ψ]+ s))
.

While, the supply chain i’s best response function in the case of full information sharing is as follows:

q̂Fi (qj) =
−αE [ϵ|Ψ]− γE [qj |Ψ]+ ℓ(E [ϵ|Ψ] (r− 2s)−E [ϵ2|Ψ]+ η)+π

k+6
. (24)

Using (22)∼(24), we reverse the roles of i and j and obtain the response functions (retail quantity) of rival

supply chain q
Yj

j (qi), for Yj ∈ {N,P,F}, by assuming the conjecture qi about focal supply chain i’s retail

quantity.

Next, based on competing supply chains’ response functions qYi
i (qj) and q

Yj

j (qi), we can obtain the BNE

retail quantities. For example, when the platform does not share any information with either of the two supply

chains (i.e., Yi =Yj =N), it is easy to verify that the pair of retail quantities, qNN
i = π

γ+k+6
, qNN

j = π
γ+k+6

,

satisfies the best response functions. Moreover, using Claim 1 in Ha et al. (2011), we can show the uniqueness

of {qNN
i , qNN

j }. The BNE retail quantities for the information arrangements can be proved similarly. □

B.2. Retailer i’s payoff ΠYi
Ri
(ϕ

Yj ,Yi

j ), manufacturer i’s payoff ΠYi
Mi

(ϕ
Yj ,Yi

j ), and the platform’s

payoff ΠYi
Pi
(ϕ

Yj ,Yi

j ) of serving retailer i, depending on rival supply chain j’s competitive

response ϕ
Yj ,Yi

j

Given ϕj = (ϕj0 , ϕj1 , ϕj2), we define the following functions: Π̄R(ϕj) :=
(π(k+6)
γ+k+6

−γη(ϕj0
+ϕj2

))2

(k+6)2
, Π̄M(ϕj) :=

(k+4)(π(k+6)
γ+k+6

−γη(ϕj0
+ϕj2

))2

2(k+6)2
, Π̄Pi

(ϕj) :=
2(π(k+6)

γ+k+6
−γη(ϕj0

+ϕj2
))2

(k+6)2
, and ∆(ϕj) := (α+ϕj1γ+(2s− r)ℓ)2v1 +(γϕj2 +

ℓ)2v2. Then, retailer i’s payoff, manufacturer i’s payoff, and the platform’s payoff of serving retailer i, are

respectively expressed as follows:

(a) In the case of no information sharing (i.e., Yi =N),

ΠN
Ri
(ϕ

Yj ,N

j ) = Π̄R(ϕ
Yj ,N

j ), ΠN
Mi

(ϕ
Yj ,N

j ) = Π̄M(ϕ
Yj ,N

j ), ΠN
Pi
(ϕ

Yj ,N

j ) = Π̄P (ϕ
Yj ,N

j ). (25)

(b) In the case of partial information sharing (i.e., Yi =P),

ΠYi
Ri
(ϕ

Yj ,P

j ) = Π̄R(ϕ
Yj ,P

j )+
∆(ϕ

Yj ,P

j )

16
, ΠP

Mi
(ϕ

Yj ,P

j ) = Π̄M(ϕ
Yj ,P

j )−k
∆(ϕ

Yj ,P

j )

32
, ΠP

Pi
(ϕ

Yj ,P

j ) = Π̄P (ϕ
Yj ,P

j )+
∆(ϕ

Yj ,P

j )

8
.

(26)

(c) In the case of full informatin sharing (i.e., Yi =F),

ΠF
Ri
(ϕ

Yj ,F

j ) = Π̄R(ϕ
Yj ,F

j )+
∆(ϕ

Yj ,F

j )

(k+6)2
, ΠF

Mi
(ϕ

Yj ,F

j ) = Π̄M(ϕ
Yj ,F

j )+
∆(ϕ

Yj ,F

j )

2(k+6)2
, ΠF

Pi
(ϕ

Yj ,F

j ) = Π̄P (ϕ
Yj ,F

j )+
∆(ϕ

Yj ,F

j )

(k+6)2
.

(27)
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B.3. Proof of Proposition 4

In this proof, we define A = aη + 1 and use A as the decision variable, rather than a. As a result, the

platform’s problem becomes

max
A≥1

{G(A)}=max
A≥1

{ 2π(ℓ)2

(k+6)2
+

(A− 1)η (A(α− rℓ+2sℓ)2 +2(A− 1)ηℓ2)

8A2
− w−Aw

η

}
,

where π(ℓ) :=−c+ r(α+ sℓ− 1)− s(α+ sℓ)+u− ηℓ} is decreasing in ℓ.

By applying the FOC, we consider the first-order derivative of the platform’s objective function G(A) as

follows:
dG(A)

dA
=

η (A(α− rℓ+2sℓ)2 +4(A− 1)ηℓ2)

8A3
− w

η
,

which is a function that cross the zero line single time, from positive to negative, when dG(A)

dA
|A=1 > 0. In

particular, dG(A)

dA
|A=1 > 0 is equivalent to w < 1

8
η2(α− rℓ+ 2sℓ)2. This result proves the quasiconcavity of

the G(A), such that the optimal solution A∗ = argmaxA≥1{G(A)} is unique, i.e., a∗ = A∗−1
η

is unique.

Next, we consider the cross derivative of the objective function:

∂2G

∂A∂ℓ
=

η(A(2s− r)(α− rℓ+2sℓ)+ 4(A− 1)ηℓ)

4A3
≥ 0,

which means that the objective function G(·) is supermodular in (A,ℓ). As such, the optimal solution A∗(ℓ)

is increasing in ℓ, which implies that a∗(ℓ) = A∗(ℓ)−1

η
is also increasing.

Finally, we prove the convexity of the optimal value G(A∗). Note that the term 2π(ℓ)2

(k+6)2
is convex in ℓ.

It suffices to show that the function Ḡ(A∗) =
(A∗−1)η(A∗(α−rℓ+2sℓ)2+2(A∗−1)ηℓ2)

8(A∗)2
− w−A∗w

η
is also convex. We

consider the second-order derivative:

d2Ḡ(A∗)

dℓ2
=

(A∗ − 1)A∗η((2η(A∗ − 1)+A∗(r− 2s)2)+ η(A∗(2s− r)(α+(2s− r)ℓ)+ 4ηℓ(A∗ − 1)) dA∗

dℓ

4(A∗)3
≥ 0,

which demonstrates the convexity of G̃(A∗) in ℓ. Recall that the retailer’s payoff under the optimal accuracy

decision is G(A∗)/2, which is also convex in ℓ.

When k ≤ 2
(
2
√
2− 1

)
, partial information sharing is used in the supply chain, and the manufacturer’s

payoff under the optimal accuracy decision is given by:

π(ℓ)2(k+4)

2(k+6)2
− (A∗ − 1)ηk (A∗(α− rℓ+2sℓ)2 +2(A∗ − 1)ηℓ2)

32 (A∗)
2 ,

in which the term π(ℓ)2(k+4)

2(k+6)2
is decreasing in ℓ. Morever, it is easy to verify that

(A∗−1)ηk(A∗(α−rℓ+2sℓ)2+2(A∗−1)ηℓ2)
32(A∗)2

is increasing in ℓ given that A∗ is increasing in ℓ.

When k >
(
2
√
2− 1

)
, full information sharing is used in the supply chain under the manufacturer’s side

payment. As a result, the manufacturer’s net payoff, excluding the optimal accuracy decision is

8(k+4)π(l)2 − (A∗−1)η(k(3k+28)+28)(A∗((α−rℓ+2sℓ)2+2ηℓ2)−2ηℓ2)
(A∗)2

16(k+6)2
,

which is also decreasing in ℓ. □
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B.4. Proof of Proposition 6

In this proof, we define m := v1(α− rℓ+ 2sℓ)2 + v2ℓ
2 > 0. We assess the impact of information sharing on

the relevant players relative to the baseline of no information sharing as follows:

(a) When rival supply chain j’s information sharing arrangement is no information sharing, the effect of

partial information sharing on retailer i is given by ΠP
Ri
(ϕNP

j )−ΠN
Ri
(ϕNN

j ) = m
16

> 0 and the effect on the

platform is given by ΠP
Pi
(ϕNP

j )+ΠN
Pj
(ϕPN

i )− [ΠN
Pi
(ϕNN

j )+ΠN
Pj
(ϕNN

i )] = m
8
> 0.

Furthermore, the effect of full information sharing on retailer i and manufacturer i is given by ΠF
Ri
(ϕNF

j )−

ΠN
Ri
(ϕNN

j ) = m
(k+6)2

> 0 and ΠF
Mi

(ϕNF
j )−ΠN

Mi
(ϕNN

j ) = (k+4)m

2(k+6)2
> 0, respectively, and the effect on the platform

is given by ΠF
Pi
(ϕNF

j )+ΠN
Pj
(ϕFN

i )− [ΠN
Pi
(ϕNN

j )+ΠN
Pj
(ϕNN

i )] = 2m
(k+6)2

> 0.

(b) When rival supply chain j’s information sharing arrangement is partial information sharing,

the effect of partial information sharing on retailer i is given by ΠP
Ri
(ϕPP

j ) − ΠN
Ri
(ϕPN

j ) = m
(γ+4)2

>

0 and the effect on the platform is given by ΠP
Pi
(ϕPP

j ) + ΠP
Pj
(ϕPP

i ) − [ΠN
Pi
(ϕPN

j ) + ΠP
Pj
(ϕNP

i )] =
2(γ4+2γ3(k+2)−γ2(k(k+12)+52)−8γ(k+2)(k+6)+16(k+6)2)m

(γ+4)2(γ2−4(k+6))2
> 0.

Furthermore, the effect of full information sharing on retailer i and manufacturer i is given by ΠF
Ri
(ϕPF

j )−

ΠN
Ri
(ϕPN

j ) = (γ−4)2m

(γ2−4(k+6))2
> 0 and ΠF

Mi
(ϕPF

j )−ΠN
Mi

(ϕPN
j ) = (γ−4)2(k+4)m

2(γ2−4(k+6))2
> 0, respectively, and the effect on

the platform is given by ΠF
Pi
(ϕPF

j )+ΠP
Pj
(ϕFP

i )− [ΠN
Pi
(ϕPN

j )+ΠP
Pj
(ϕNP

i )] = (4−γ)(γ3+4γ2−8γ(k+8)+64)

8(γ2−4(k+6))2
m, which

is negative only when k > γ3+4γ2−64γ+64
8γ

.

(c) When rival supply chain j’s information sharing arrangement is full information sharing, the

effect of partial information sharing on retailer i is given by ΠP
Ri
(ϕFP

j ) − ΠN
Ri
(ϕFN

j ) = (−γ+k+6)2m

(γ2−4(k+6))2
>

0 and the effect on the platform is given by ΠP
Pi
(ϕFP

j ) + ΠF
Pj
(ϕPF

i ) − [ΠN
Pi
(ϕFN

j ) + ΠF
Pj
(ϕNF

i )] =
2(−γ4+2γ2(k+10)(k+6)−2γ(k+10)(k+6)2+(k+6)4)

(k+6)2(γ2−4(k+6))2
m> 0.

Furthermore, the effect of full information sharing on retailer i and manufacturer i is given by ΠF
Ri
(ϕFF

j )−

ΠN
Ri
(ϕFN

j ) = m
(γ+k+6)2

> 0 and ΠF
Mi

(ϕFF
j ) − ΠN

Mi
(ϕFN

j ) = (k+4)m

2(γ+k+6)2
> 0, respectively, and the effect on the

platform is given by ΠF
Pi
(ϕFF

j )+ΠF
Pj
(ϕFF

i )− [ΠN
Pi
(ϕFN

j )+ΠF
Pj
(ϕNF

i )] = 2m((k+6)2−γ2−2γ(k+6))

(k+6)2(γ+k+6)2
> 0.

The above discussion proves the result. □

B.5. Proof of Proposition 7

We discuss the effect of full information sharing (with a supply chain i) on relevant players as follows.

(a) When the rival supply chain j has partial information sharing, i.e., Yj = P, the effect of full infor-

mation sharing on retailer i is ΠF
Ri
(ϕPF

j ) − ΠP
Ri
(ϕPP

j ) = − 8(k+2)m(20−γ2+2k)

(γ+4)2(γ2−4(k+6))2
< 0 and the effect on manu-

facturer i is ΠF
Mi

(ϕPF
j ) − ΠP

Mi
(ϕPP

j ) = (k+2)m(γ4−4γ2(k+8)+8k(k+10)+256)

(γ+4)2(γ2−4(k+6))2
> 0. Furthermore, the direct effect

of full information sahring on the platform is ΠF
Pi
(ϕPF

j )−ΠP
Pi
(ϕPP

j ) = − 16(k+2)m(−γ2+2k+20)
(γ+4)2(γ2−4(k+6))2

< 0, the side

effect on the platform is ΠP
Pj
(ϕFP

i ) − ΠP
Pj
(ϕPP

i ) = 2γ(k+2)m(−2(γ−1)γ+(γ+8)k+48)

(γ+4)2(γ2−4(k+6))2
> 0, and the overall effect

of full information sharing on the platform is given by: ΠF
Pi
(ϕPF

j )− ΠP
Pi
(ϕPP

j ) + ΠP
Pj
(ϕFP

i )− ΠP
Pj
(ϕPP

i ) =
2(k+2)m((γ(γ+8)−16)k−2((γ−8)γ(γ+3)+80))

(γ+4)2(γ2−4(k+6))2
< 0.

(b) When the rival supply chain j has full information sharing, i.e., Yj = F, the effect of full informa-

tion sharing on retailer i is ΠF
Ri
(ϕFF

j )− ΠP
Ri
(ϕFP

j ) = −m(γ4−2γ2(k+6)2+(k+2)(k+6)2(k+10))

16(k+6)2(γ+k+6)2
< 0 and the effect
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on manufacturer i is ΠF
Mi

(ϕFF
j )−ΠP

Mi
(ϕFP

j ) = (k+2)m(2γ4−2γ2(k+6)(k+8)+(k+6)2(k(k+10)+32))

2(γ+k+6)2(γ2−4(k+6))2
> 0. Moreover, the

direct effect of full information on the platform is ΠF
Pi
(ϕFF

j )−ΠP
Pi
(ϕFP

j ) =− 2(k+2)(k+6)m(60−2γ2+k(k+16))

(γ+k+6)2(γ2−4(k+6))2
< 0,

the side effect on the platform is ΠF
Pj
(ϕFF

i ) − ΠF
Pj
(ϕPF

i ) = 2γ(k+2)m(2(24−γ2−γ)+(8−γ)k)

(γ+k+6)2(γ2−4(k+6))2
> 0, and the over-

all effect of full information sharing on the platform is ΠF
Pi
(ϕFF

j ) − ΠP
Pi
(ϕFP

j ) + ΠF
Pj
(ϕFF

i ) − ΠF
Pj
(ϕPF

i ) =

− 2(k+2)m(2γ3−γ2(k+10)−8γ(k+6)+(k+6)2(k+10))

(γ+k+6)2(γ2−4(k+6))2
< 0.

From the above results, we conclude that manufacturer i needs to offer side payments to retailer i and the

platform, which are no less than |ΠF
Ri
(ϕ

Yj ,F

j )−ΠP
Ri
(ϕ

Yj ,P

j )| and |ΠF
Pi
(ϕ

Yj ,F

j )−ΠP
Pi
(ϕ

Yj ,P

j ) +Π
Yj

Pj
(ϕ

F,Yj

i )−

Π
Yj

Pj
(ϕ

P,Yj

i )|, respectively. Specifically, when rival supply chain j’s information arrangement is partial infor-

mation sharing (i.e., Yj = P), manufacturer i’s net value of full information sharing, considering the side

payments, is given by:

(k+2)m (γ4 − 4γ3 − 2γ2(k+2)+16γ(k+6)+8k(k+4)− 224)

(γ+4)2 (γ2 − 4(k+6))
2 , (28)

which is positive only when k > κP = 1
8

(
γ2 − 8γ− 16+

√
2048− 7γ4 +16γ3 +64γ2 − 512γ

)
.

While, when when rival supply chain j’s information arrangement is partial information sharing (i.e.,

Yj =F), manufacturer i’s net value of full information sharing, considering the side payments, is given by:

1

16
m

(
− γ2

(k+6)2
+

8(k− 8)

γ2 − 4(k+6)
+

8(k(k+2)− 40)(−2γ+ k+10)

(γ2 − 4(k+6))
2 +

2γ

k+6
+

8(k+14)

(γ+ k+6)2
− 1

)
, (29)

which is positive only when k > κF, where κF is the unique positive root for f(k) =− γ2

(k+6)2
+ 8(k−8)

γ2−4(k+6)
+

8(k(k+2)−40)(−2γ+k+10)

(γ2−4(k+6))2
+ 2γ

k+6
+ 8(k+14)

(γ+k+6)2
− 1 = 0. It can verified that κP <κF, which completes the proof. □

B.6. Proof of Proposition 8

It is easy to verify that κP < κF. Based on the above conditions, we discuss the platform’s equilibrium

information sharing strategies for competing supply chains as follows: (1) If k > κF, then a focal supply chain

will adopt full information sharing regardless of the rival supply chain’s information arrangement. Thus, the

unique Nash equilibrium is (F,F); (2) If κP ≤ k≤ κF, then a focal supply chain will adopt full (resp., partial)

information sharing as the rival supply chain adopts partial (resp., full) information sharing. Thus, (P,F)

and (F,P) are two possible equilibria; (3) If k < κP, then a focal supply chain will adopt partial information

sharing regardless of rival supply chain’s information arrangement. Thus, the unique Nash equilibrium is

(P,P). The platform’s net playoffs under each equilibrium information sharing strategies can be obtained

using the results shown in AppendixB.2. □

B.7. Proof of Proposition 9

In this proof, we define A = aη + 1 and use A as the decision variable, rather than a. As a result, the

platform’s problem becomes

max
A≥1

{
4π(ℓ)2

(k + γ + 6)2
+

(A− 1)ζη (A(α+(2s− r)ℓ)2 +2(A− 1)ηℓ2)

A2
+

w−Aw

η

}
,

in which ζ = ζFF if k > κF, ζ = ζFP if κP ≤ l≤ κF, and ζ = ζPP if k < κP. Note that the platform’s objective

function G(A,ζ) =
(A−1)ζη(A(α−rℓ+2sℓ)2+2(A−1)ηℓ2)

A2 + w−Aw
η

is supermodular, which implies that the optimal
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solution A∗ = argmaxA≥1{G(A,ζ)} is increasing ζ. As such, the optimal accuracy decision a∗∗ = A∗−1
η

is

increasing in ζ. From the relationship ζFF ≥ ζFP ≥ ζPP, we obtain aFF ≥ aFP ≥ aPP.

Similarly, the objective function G(A,ℓ) is supermodular in (A,ℓ), which implies that A∗ is also increasing

ℓ. As such, the solutions {aFF, aFP, aPP} are all increasing in ℓ.

Finally, it is easy to verify that the parameter {ζFF, ζFP, ζPP} are all decreasing in γ, whic implies that

A∗ is also decreasing in γ. As such, the {aFF, aFP, aPP} are all decreasing in ℓ. □

Appendix C: Quantity-dependent Rejection Probability

In this section, we generalize the main model by considering the probability of freight rejection also depends

on the retailer’s order quantity. There is empirical evidence (e.g., Scott et al. (2017), Acocella (2022) showing

that a carrier’s probability of freight rejection is increasing as its shippers’ loads increase because a larger

volume of the shippers’ loads enforces the carrier to face the prospect of having too many trucks in a region,

resulting in follow-on loads with decreasing profitability. Motivated by the practical evidences, we consider

the general probability of freight rejection as follows:

δ(S, q) = g(q)+ ℓS,

where the term g(q) represents the impact of increasing order quantity on the freight rejection, which is

increasing in q. Specifically, we consider a power-form of g(q) as follows:

g(q) = α−λ/q for q > 0,

where α> 0 and λ> 0 are two constants. Such power-form function g(q) means that the marginal increase in

the probability of freight rejection is diminishing as the volume increases. The diminishing phenomenon has

been validated by the empirical work of Scott et al. (2017), which shows that the marginal increase in the

probability of freight rejection is 0.0799 as the volume increases from medium to high, while the marginal

increase turns into 0.06 as the volume increases from high to very high. The power-from function of g(q) also

ensures the tractability of our model.

In this extension, we still follow the definition π := u− c+ r(α+ sℓ− 1)− s(α+ sℓ)− ηℓ. We also assume

that λ < π(α+sℓ)

k+4
and 0< ℓ <

−2πα+
√

(k+4)2λ2+2π(k+8)λ+π2+(k+4)λ+π

2πs
to ensure the equilibrium probability of

freight rejection falls into the interval (0,1).

Proposition 10. In single supply chain with quantity-dependent rejection probability,

(a) compared to the baseline of no information sharing, partial information sharing benefits the retailer

and the platform, but hurts the manufacturer; moreover, full information sharing benefits the manufacturer

and the platform, and benefits the retailer iff λ< (α+sℓ)2((α+(2s−r)ℓ)2v1+ℓ2v2)

2(k+2)v1ℓ(α+(2s−r)ℓ)
.

(b) Compared to partial information sharing, full information sharing benefits the manufacturer, but hurts

the retailer and the platform;

(c) Overall, full information sharing needs to be induced by the manufacturer’s side payments to the retailer

and the manufacturer iff k > κ′, where κ′ is a constant; otherwise, partial information sharing is adopted in

the supply chain.
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Proposition 10(a) characterizes the effect of either partial or full information sharing on relevant players

relative to the baseline setting of no information sharing. Specifically, partial information sharing benefits the

retailer and the platform, but hurts the platform, which is consistent with the finding, shown in Proposition

2, in the main model. While, there is a slight difference lies in the effect of information sharing, that is, full

information sharing benefits the retailer iff the parameter λ is not large (i.e., λ< (α+sℓ)2(v1(α+(2s−r)ℓ)2+v2ℓ
2)

2(k+2)v1ℓ(α+(2s−r)ℓ)
).

Since the parameter λ characterizes the sensitivity of freight rejection to the retailer’s order quantity, this

result means that full information sharing benefits the retailer only when the probability of freight rejection

is not highly sensitive to the order quantity.

From Proposition 10(b) and (c), we find that the effect of full information sharing, relative to partial

information sharing, is the same as the previous finding in the main model. Furthermore, the condition for

adopting full information sharing is that production diseconomy is sufficiently large. As such, we claim that

the result for the main model continue to hold in this extension, only when the probability of freight rejection

is not highly sensitive to the order quantity.

Proof of Proposition 10. We first consider the baseline setting of on information sharing. Specifically,

the retailer maximizes the expected profit, E [q(u− q−w− r(1− δ(S, q))− (S+ ρ)δ(S, q))], with the order

quantity:

q̂(w,ρ) =
1

2
(c− ρ(α+ sℓ)−w+π).

Given the conjecture ρ about the wholesale price, the platform maximizes the expected profit,

E [ρ q̂(w,ρ) δ(S, q̂(w,ρ))|Ψ], with the following brokerage fee:

ρ̂(w) =
(c−w+π)(α+ sℓ)− 2λ

2(α+ sℓ)2
.

Meanwhile, given the conjecture w about the brokerage fee, the manufacturer maximizes the expected profit,

E
[
q̂(w,ρ)(w− c)− k

2
q̂(w,ρ)2

]
, with the following wholesale price:

ŵ(ρ) = c+
(k+2)(π− ρ(α+ sℓ))

k+4
.

By jointly considering the response functions ρ̂(w) and ŵ(ρ), we obtain the equilibrium wholesale price and

brokerage fee:

ρN =
2π(α+ sℓ)− 2(k+4)λ

(k+6)(α+ sℓ)2
,wN = c+

(k+2)(2λ+π(α+ sℓ))

(k+6)(α+ sℓ)
, (30)

and then the supply chain’s equilibrium retail quantity is

qN = q̂(wN, ρN) =
2λ+π(α+ sℓ)

(k+6)(α+ sℓ)
. (31)

Then, the equilibrium probability of freight rejection is α− (k+6)λ(α+sℓ)

2λ+π(α+sℓ)
+ sℓ, which is positive under the

assumption λ< π(α+sℓ)

k+4
.

Using the equilibrium wholesale price and brokerage fee {ρN,wN}, we obtain the retailer’s, manufacturer’s,

and platform’s payoffs in the baseline setting, which are respectively denoted by ΠN
R ,Π

N
M ,ΠN

P , as follows:

ΠN
R =

λ (−2(k(k+10)+22)λ− (k+6)2(r− s)(α+ sℓ)2)+ 2π(k+8)λ(α+ sℓ)+π2(α+ sℓ)2

(k+6)2(α+ sℓ)2
,

ΠN
M =

(k+4)(2λ+π(α+ sℓ))2

2(k+6)2(α+ sℓ)2
, ΠN

P =
2(π(α+ sℓ)− (k+4)λ)2

(k+6)2(α+ sℓ)2
.

(32)
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In the case of partial information sharing, the retailer maximizes the expected profit conditioned on Ψ,

E [q(u− q−w− r(1− δ(S, q))− (S+ ρ)δ(S, q))|Ψ], with the order quantity:

q̆(ρ,w,Ψ)=
1

2
(c−α(E [ϵ|Ψ]+ ρ)+ ℓ(E [ϵ|Ψ] r−E [ϵ|Ψ] (ρ+2s)−E

[
ϵ2|Ψ

]
+ η− ρs)−w+π).

Given the conjecture w about the wholesale price, the platform maximizes the expected profit,

E [ρ q̂(w,ρ,Ψ) δ(S, q̂(w,ρ))|Ψ], with the following brokerage fee:

ρ̆(w,Ψ)=
(α+ ℓ(E [ϵ|Ψ]+ s))(c−αE [ϵ|Ψ]+ ℓ(E [ϵ|Ψ] (r− 2s)−E [ϵ2|Ψ]+ η)−w+π)− 2λ

2(α+ ℓ(E [ϵ|Ψ]+ s))2
.

Without observing the signal Ψ, the manufacturer maximizes the expected profit based on prior information,

E
[
q̆(w,ρ,Ψ)(w− c)− k

2
q̆(w,ρ,Ψ)2

]
, with the following wholesale price:

w̆(ρ) = c+
E [(ρ(Ψ)(k(ℓ(−E [ϵ|Ψ]− s)−α)− 2(α+E [ϵ|Ψ] ℓ+ sℓ)))] +π(k+2)

k+4
.

By jointly considering the response functions, we find the Bayesian Nash equilibrium that simultaneously

satisfy q̆(ρ,w,Ψ) and w̆(ρ) as follows:

ρP =
(α+ ℓ(E [ϵ|Ψ]+ s))

(
−αE [ϵ|Ψ]+ ℓ(E [ϵ|Ψ] (r− 2s)−E [ϵ2|Ψ]+ η)− (k+2)((2λ+π)sℓ−2λ)

(k+6)sℓ
+π

)
− 2λ

2(α+ ℓ(E [ϵ|Ψ]+ s))2
,

wP = c+
(k+2)(2λ+π(α+ sℓ))

(k+6)(α+ sℓ)

Again, based on the equilibrium wholesale price and brokerage fee {ρP,wP} we also compute the all the

players’ payoffs in the case of partial information, which are respectively denoted by ΠP
R,Π

P
M ,ΠP

P . However,

the exact expressions for {ΠP
R,Π

P
M ,ΠP

P} are very complicated because the term E
[

1
s+E[ϵ|Ψ]

]
does not have

closed form expressions. For ease of expositions, we use the following approximation, s + E [ϵ|Ψ] ≈ s, to

simplify the expressions, where the approximation actually makes sense when the variability of ϵ is not large.

Then, we have:

ΠP
R =ΠN

R +
1

16

(
v1(α− rℓ+2sℓ)2 + v2ℓ

2
)
,

ΠP
M =ΠN

M − 1

32
k
(
v1(α− rℓ+2sℓ)2 + v2ℓ

2
)
,

ΠP
P =ΠN

P +
1

8

(
v1(α− rℓ+2sℓ)2 + v2ℓ

2
)
,

(33)

Similarly, let {wF, ρF} denote the equilibrium wholesale price and brokerage fee in the case of full informa-

tion sharing, and let ΠF
R,Π

F
M ,ΠF

P denote the retailer’s, the manufacturer’s, and the platform’s payoffs. Then

we have:

ρF =
2(α+ ℓ(E [ϵ|Ψ]+ s))(−αE [ϵ|Ψ]+ ℓ(E [ϵ|Ψ] (r− 2s)−E [ϵ2|Ψ]+ η)+π)− 2(k+4)λ

(k+6)(α+ ℓ(E [ϵ|Ψ]+ s))2
,

wF = c+
(k+2)((α+ ℓ(E [ϵ|Ψ]+ s))(−αE [ϵ|Ψ]+ ℓ(E [ϵ|Ψ] (r− 2s)−E [ϵ2|Ψ]+ η)+π)+ 2λ)

(k+6)(α+ ℓ(E [ϵ|Ψ]+ s))

and

ΠF
R =ΠN

R +
v1(α− rℓ+2sℓ)2 + v2ℓ

2

(k+6)2
− 2(k+2)v1ℓ(α+(2s− r)ℓ)

(k+6)2(α+ sℓ)2
λ,

ΠF
M =ΠN

M +
(k+4) (v1(α− rℓ+2sℓ)2 + v2ℓ

2)

2(k+6)2
,

ΠF
P =ΠN

P +
2(v1(α− rℓ+2sℓ)2 + v2ℓ

2)

(k+6)2
.

(34)
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From (33) we find that partial information sharing benefits the retailer and the platform, but hurts the

manufacturer relative to no information sharing. Observing (34) we find that full information sharing benefits

the retailer and the manufacturer, and benefits the retailer iff λ<
(α+sℓ)2(v1(α−rℓ+2sℓ)2+v2ℓ

2)
2(k+2)v1ℓ(α+(2s−r)ℓ)

.

In addition, by comparing (33) and (34), we find that full information sharing hurts the retailer and the

platform, and benefits the manufacturer. Hence, it is necessary for the manufacturer to offer side payments

the retailer and the platform to induce full information sharing. With the side payment, the manufacturer’s

net value under full information sharing sharing is given by:

(k+2)v1(−α+rℓ−2sℓ)((k(k+4)−28)(α+sℓ)2(−α+rℓ−2sℓ)+64λℓ)
(α+sℓ)2

+(k(k(k+8)+4)+16)v2ℓ
2

32(k+6)2
,

which is positive when k > κ′, where κ′ is the unique positive root for the above function. □
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